[1] | Y. Liu, H. Li, J.F. Wang, S. He. Splitting positive definite mixed element methods for pseudo-hyperbolic equations. Numer. Methods Partial Differential Equations, 28(2), (2012), 670-688. |
|
[2] | D.Y. Shi, Q.L. Tang, Superconvergence analysis of splitting positive definite nonconforming mixed finite element method for pseudo-hyperbolic equations, Acta Mathematicae Applicatae Sinica, English Series, 29(4), (2013), 843-854. |
|
[3] | H. Guo, Analysis of split weighted least-squares procedures for pseudo-hyperbolic equations, Appl. Math. Comput., 217(8), (2010), 4109-4121. |
|
[4] | H. Guo, H.X. Rui, Least-squares Galerkin procedures for pseudo-hyperbolic equations, Appl. Math. Comput., 189, (2007), 425-439. |
|
[5] | Y. Liu, H. Li, H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations, Appl. Math. Comput., 212(2), (2009) 446-457. |
|
[6] | Z. J. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 34 (2010), 2414-2425. |
|
[7] | Y.D. Zhang, Y.Q. Niu, D.W. Shi. Nonconforming H1-Galerkin mixed finite element method for pseudo-hyperbolic equations, American Journal of Computational Mathematics, 2, (2012), 269-273. |
|
[8] | Y. Liu, J.F. Wang, H. Li, W. Gao, S. He, A new splitting H1-Galerkin mixed method for pseudo-hyperbolic equations, World Academy of Science, Engineering and Technology, 51, (2011), 1444-1449. |
|
[9] | Z.C. Fang, H. Li, Z.D. Luo, A mixed covolume method for pseudo-hyperbolic equation, Acta Mathematica Scientia, 33A(3), (2013), 535-550 |
|
[10] | A.K. Pani, An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal. 35, (1998), 712-727. |
|
[11] | A.K. Pani, G. Fairweather, H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA Journal of Numerical Analysis, 22, (2002), 231-252. |
|
[12] | A.K. Pani, R.K. Sinha, A.K. Otta. An H1-Galerkin mixed method for second order hyperbolic equations, International Journal of Numerical Analysis and Modeling, 1(2), (2004), 111-129. |
|
[13] | L. Guo, H.Z. Chen, H1-Galerkin mixed finite element method for Sobolev equations, J. Sys. Sci. Math. Scis., 26(3), (2006), 301-314. |
|
[14] | L. Guo, H.Z. Chen, H1-Galerkin mixed finite element method for the regularized long wave equation, Computing, 77, (2006), 205-221. |
|
[15] | Y. Liu, H. Li, Y. W. Du, and J. F. Wang, Explicit multistep mixed finite element method for RLW equation, Abstract and Applied Analysis, Volume 2013, Article ID 768976, 12 pages. |
|
[16] | Y. Liu, H. Li, J.F. Wang. Error estimates of H1-Galerkin mixed finite element method for Schrodinger equation, Appl. Math. J. Chinese Univ., 24(1), (2009), 83-89. |
|
[17] | D.Y. Shi, H.H. Wang, Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Mathematicae Applicatae Sinica(English Series), 25(2), (2009), 335-344. |
|
[18] | H.Z. Chen, H. Wang, An optimal-order error estimate on an H1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow, Numerical Methods for Partial Differential Equations, 26(1) (2010) 188-205. |
|
[19] | H.T. Che, Z.J. Zhou, Z.W. Jiang, Y.J. Wang, H1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations, Numer. Methods for Partial Differential Equations, 29(3), (2013), 799-817. |
|
[20] | A.K. Pany, N. Nataraj, S. Singh, A new mixed finite element method for burgers equation, J. Appl. Math. Comput., 23(1-2) (2007), 43-55. |
|
[21] | Z D Luo. Theory Bases and Applications of Finite Element Mixed Methods, Science Press, Beijing, 2006. |
|