American Journal of Numerical Analysis
ISSN (Print): 2372-2118 ISSN (Online): 2372-2126 Website: https://www.sciepub.com/journal/ajna Editor-in-chief: Emanuele Galligani
Open Access
Journal Browser
Go
American Journal of Numerical Analysis. 2023, 7(1), 1-8
DOI: 10.12691/ajna-7-1-1
Open AccessArticle

Cascadic Tensor Multigrid Method and Economic Cascadic Tensor Multigrid Method for Image Restoration Problems

Ziqi Yan1, Chenliang Li1, and Yuhan Chen1

1School of Mathematics and Computating Science, Center for Applied Mathematics of Guangxi (GUET), Guilin University of Electronics Technology, Guilin 541004, China

Pub. Date: October 29, 2023

Cite this paper:
Ziqi Yan, Chenliang Li and Yuhan Chen. Cascadic Tensor Multigrid Method and Economic Cascadic Tensor Multigrid Method for Image Restoration Problems. American Journal of Numerical Analysis. 2023; 7(1):1-8. doi: 10.12691/ajna-7-1-1

Abstract

A cascadic tensor multigrid method and an economic cascadic tensor multigrid method is presented for solving the image restoration models. The methods use quadratic interpolation as prolongation operator to provide more accurate initial values for the next fine grid level, and constructs a preserving-edge-denoising operator to obtain better edges and remove noise. The experimental results show that the new methods not only improves computational efficiency but also achieve better restoration quality.

Keywords:
Image restoration Cascadic tensor multigrid methods Prolongation operator Preserving-edge-denoising operator

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview [J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.
 
[2]  Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one [J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
 
[3]  Guillemot C, Le Meur O. Image inpainting: Overview and recent advances [J]. IEEE Signal Processing Magazine, 2013, 31(1): 127-144.
 
[4]  Bentbib A H, Khouia A, Sadok H. Color image and video restoration using tensor CP decomposition [J]. BIT Numerical Mathematics, 2022, 62(4): 1257-1278.
 
[5]  Cui L B, Chen C, Li W, et al. An eigenvalue problem for even order tensors with its applications [J]. Linear and Multilinear Algebra, 2016, 64(4): 602-621.
 
[6]  Xie Z J, Jin X Q, Sin V K. An optimal preconditioner for tensor equations involving Einstein product [J]. Linear and Multilinear Algebra, 2020, 68(5): 886-902.
 
[7]  Kolda T G, Bader B W. Tensor decompositions and applications [J]. SIAM review, 2009, 51(3): 455-500.
 
[8]  Brazell M, Li N, Navasca C, et al. Solving multilinear systems via tensor inversion [J]. SIAM Journal on Matrix Analysis and Applications, 2013, 34(2): 542-570.
 
[9]  Wang Q W, Xu X. Iterative algorithms for solving some tensor equations [J]. Linear and Multilinear Algebra, 2019, 67(7): 1325-1349.
 
[10]  Huang B, Li W. Numerical subspace algorithms for solving the tensor equations involving Einstein product [J]. Numerical Linear Algebra with Applications, 2021, 28(2): e2351.
 
[11]  Morigi S, Reichel L, Sgallari F, et al. Cascadic multiresolution methods for image deblurring [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 51-74.
 
[12]  Bornemann F A, Deuflhard P. The cascadic multigrid method for elliptic problems [J]. Numerische Mathematik, 1996, 75: 135-152.
 
[13]  Chen C M, Hu H L, Xie Z Q, et al. Analysis of extrapolation cascadic multigrid method (EXCMG) [J]. Science in China Series A: Mathematics, 2008, 51(8): 1349-1360.
 
[14]  Chen C, Shi Z C, Hu H. On extrapolation cascadic multigrid method[J]. Journal of Computational Mathematics, 2011: 684-697.
 
[15]  Morigi S, Reichel L, Sgallari F. Cascadic multilevel methods for fast nonsymmetric blur-and noise-removal[J]. Applied Numerical Mathematics, 2010, 60(4): 378-396.
 
[16]  Shi Z, Xu X, Huang Y. Economical cascadic multigrid method (ECMG) [J]. Science in China Series A: Mathematics, 2007, 50(12): 1765-1780.
 
[17]  Bornemann F A, Deuflhard P. The cascadic multigrid method for elliptic problems [J]. Numerische Mathematik, 1996, 75: 135-152.
 
[18]  Chu Z, Yan Z, Li C. A New Extrapolation Economy Cascadic Multigrid Method for Image Restoration Problems [J]. American Journal of Computational Mathematics, 2023, 13(2): 323-341.
 
[19]  Chen Y, Li C. A Tensor Multigrid Method for Solving Sylvester Tensor Equations [J]. IEEE Transactions on Automation Science and Engineering, 2023.
 
[20]  Cui L B, Chen C, Li W, et al. An eigenvalue problem for even order tensors with its applications [J]. Linear and Multilinear Algebra, 2016, 64(4): 602-621.
 
[21]  Liu X, Wang L, Wang J, et al. A three-dimensional point spread function for phase retrieval and deconvolution [J]. Optics Express, 2012, 20(14): 15392-15405.
 
[22]  Xie Z J, Jin X Q, Sin V K. An optimal preconditioner for tensor equations involving Einstein product [J]. Linear and Multilinear Algebra, 2020, 68(5): 886-902.