American Journal of Numerical Analysis
ISSN (Print): 2372-2118 ISSN (Online): 2372-2126 Website: https://www.sciepub.com/journal/ajna Editor-in-chief: Emanuele Galligani
Open Access
Journal Browser
Go
American Journal of Numerical Analysis. 2013, 1(1), 22-31
DOI: 10.12691/ajna-1-1-4
Open AccessArticle

Optimal Quadrature Formulas for the Cauchy Type Singular Integral in the Sobolev Space L2(2)(-1,1)

Kholmat M. Shadimetov1, Abdullo R. Hayotov1, and Dilshod M. Akhmedov1

1Department of Computational Methods, Institute of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan

Pub. Date: December 02, 2013

Cite this paper:
Kholmat M. Shadimetov, Abdullo R. Hayotov and Dilshod M. Akhmedov. Optimal Quadrature Formulas for the Cauchy Type Singular Integral in the Sobolev Space L2(2)(-1,1). American Journal of Numerical Analysis. 2013; 1(1):22-31. doi: 10.12691/ajna-1-1-4

Abstract

This paper studies the problem of construction of the optimal quadrature formula in the sense of Sard in L2(2)(-1,1) S.L.Sobolev space for approximate calculation of the Cauchy type singular integral. Using the discrete analogue of the operator d4/dx4 we obtain new optimal quadrature formulas. Furthermore, explicit formulas of the optimal coefficients are obtained. Finally, in numerical examples, we give the error bounds obtained for the case h=0.02 by our optimal quadrature formula and compared with the corresponding error bounds of the quadrature formula (15) of the work [26] at different values of singular point t. The numerical results show that our quadrature formula is more accurate than the quadrature formula constructed in the work [26].

Keywords:
optimal quadrature formula singular integral of Cauchy type Sobolev space

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Lifanov I.K. The method of singular equations and numerical experiments. Moscow, TOO "Yanus", 1995. -520p. (in Russian)
 
[2]  Gakhov F.D. Boundary problems. –Moscow, Nauka, 1977. 640p. (in Russian).
 
[3]  Muskhelishvili N.I. Singular Integral Equations. -M.: Nauka, 1968. 512p. (in Russian)
 
[4]  Nikol’skii S.M. Concerning estimation for approximate quadrature formulas, Uspekhi Mat. Nauk 5 (2(36)) (1950) 165-177 (in Russian).
 
[5]  Blaga P., Coman Gh. Some problems on optimal quadrature, Stud. Univ. Babeş-Bolyai Math. 52 (4) (2007) 21-44.
 
[6]  Bojanov B. Optimal quadrature formulas, Uspekhi Mat. Nauk. 60 (6(366)) (2005) 33-52 (in Russian).
 
[7]  Catinaş T., Coman Gh. Optimal quadrature formulas based on the φ-function method, Stud. Univ. Babeş-Bolyai Math. 51 (1) (2006) 49-64.
 
[8]  Chakhkiev M.A. Linear differential operators with real spectrum, and optimal quadrature formulas, Izv. Akad. Nauk SSSR Ser. Mat. 48 (5) (1984) 1078-1108 (in Russian).
 
[9]  Nikol’skii S.M. Quadrature Formulas, Nauka, Moscow, 1988 (in Russian).
 
[10]  Zhensikbaev A.A. Monosplines of minimal norm and the best quadrature formulas, Uspekhi Mat. Nauk. 36 (1981) 107-159 (in Russian).
 
[11]  Sard A. Best approximate integration formulas; best approximation formulas, Amer. J. Math. 71 (1949) 80-91.
 
[12]  Lanzara F. On optimal quadrature formulae, J. Inequal. Appl. 5 (2000) 201-225.
 
[13]  Sobolev S.L. The coefficients of optimal quadrature formulas, in: Selected Works of S.L. Sobolev, Springer, 2006, pp. 561-566.
 
[14]  Sobolev S.L., VaskevichV.L. The Theory of Cubature Formulas. Kluwer Academic Publishers Group, Dordrecht (1997).
 
[15]  Shadimetov Kh.M., Hayotov A.R. Optimal quadrature formulas with positive coefficients in L2(m) (0,1) space. Journal of Comp. and Applied Math. 235 (2011) 1114-1128.
 
[16]  Hayotov A.R, Milovanovic G.V., Shadimetov Kh.M. On an optimal quadrature formula in the sense of Sard. Numerical Algorithms (2011) 57, 487-510.
 
[17]  Shadimetov Kh.M., Hayotov A.R., Azamov S.S. Optimal quadrature formula in K2P2 space. Applied Numerical Mathematics (2012) 62, 1893-1909.
 
[18]  Shadimetov Kh.M., Hayotov A.R. Construction of interpolation splines minimizing semi-norm in W2(m,m-1)(0,1) space. BIT Numerical Mathematics (2013) 53, 545-563.
 
[19]  Shadimetov Kh.M., Hayotov A.R., Nuraliev F.A. Journal of Comp. and Applied Math. 243 (2013) 91-112.
 
[20]  Hayotov A.R, Milovanovic G.V., Shadimetov Kh.M. Interpolation splines minimizing a semi-norm. Calcolo, 2013.
 
[21]  Shadimetov Kh.M., Hayotov A.R. Optimal quadrature formulas in the sense of Sard in W2(m,m-1)(0,1) space Calcolo, 2013,
 
[22]  Belotserkovskii S.M., Lifanov I.K. Numerical Methods in Singular Integral Equations, Nauka, Moscow, 1985 (in Russian).
 
[23]  Gabdulkhaev B.G. Cubature formulas for many dimensional singular integrals I // Izvestiya Vuzov. Mathematics. 1975. 4. 3-13. (in Russian).
 
[24]  Israilov M.I., Shadimetov Kh.M. Weight optimal quadrature formulas for singular integrals of the Couchy type. Doklady AN RUz 1991, 8, 10-11.
 
[25]  Shadimetov Kh.M. Optimal quadrature formulas for singular integrals of the Couchy type. Doklady AN Ruz 1987, 6, Pp.9-11 (in Russian).
 
[26]  Eshkuvatov Z.K., N.M.A.Nik Long, Abdulkawi M. Numerical evaluation for Caushy type singular integrals on the interval. Journal of Computational and Applied Mathematics. 2009. p. 1995-2001.
 
[27]  Shadimetov Kh.M. Coefficients of the weight optimal quadrature formulas in the space L2(m) (0,1)// Proceedings of the V-the International Conference “Cubature Formulas and Thier Applications” –Krasnoyarsk, 1999. -Pp.207-214. (in Russian) ].
 
[28]  Shadimetov Kh.M. The discrete analogue of the operator d2m/dx2m and its properties // Voprosy vichislitelnoy i prikladnoy matematiki. Tashkent, 1985. С. 22-35.