American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: https://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2018, 6(2), 37-42
DOI: 10.12691/ajmse-6-2-3
Open AccessArticle

Mesostructured Hybrid based-Perovskite Solar Cell Optical and Electrical Modeling: Influence of the Incident Light Wavelength

Allé Dioum1, 2, Abdoulaye Ndiaye Dione1, 2, , El Hadji Oumar Gueye1, 2, Sossé Ndiaye1 and Aboubaker Chedikh Beye1

1Physical Solid and Material Sciences Group, Department of Physics (GPSSM), University of Cheikh Anta Diop, Dakar, Senegal

2Material and Composite Systems for Energy Applications (MASCA), Department of Physics, University of Cheikh Anta Diop, Dakar, Senegal

Pub. Date: November 21, 2018

Cite this paper:
Allé Dioum, Abdoulaye Ndiaye Dione, El Hadji Oumar Gueye, Sossé Ndiaye and Aboubaker Chedikh Beye. Mesostructured Hybrid based-Perovskite Solar Cell Optical and Electrical Modeling: Influence of the Incident Light Wavelength. American Journal of Materials Science and Engineering. 2018; 6(2):37-42. doi: 10.12691/ajmse-6-2-3

Abstract

Analytical model is developed to give insight into the influence of the incident wavelength of the incoming light illumination on optical and electrical properties mesostructured hybrid perovskite-based solar cell for different photoactive layer thickness. Bruggeman theory and T-matrix are used to compute the analytical expressions of optical parameters such as absorption coefficient and generation rate. Then, the short-circuit current density is deduced from the continuity equation. The absorption coefficient of the photoactive layer decreases with high incident wavelength of the incoming light of the visible spectrum (400-800 nm) while the absorbance and generation rate grow up with the phototactive layer thickness. The current density increases with illuminated wavelength ranging 400-520 nm while it decreases with higher active medium (TiO2 +Perovskite) layer thickness ranging from 500 nm to 1.7 µm. Beyond to 520 nm of the wavelength of the incoming light, the current density decreases to vanish at 800 nm. As finding in the literature, it can be noticed high absorption, charge carriers generation and current density for low wavelength in the visible spectrum which correspond to high energies.

Keywords:
Modelling Hybrid solar cell perovskite Mesostructure Bruggeman theory T-matrix

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  De Wolf, S., Holovsky, J., Moon, S. J., Löper, P., Niesen, B., Ledinsky, M., Haug, F.J., Yum, J.H., and Ballif, C., “Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance”, Journal of Physical Chemistry Letters, 5(6). 1035-1039. March.2014.
 
[2]  Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,”, Journal of the American Chemical Society, 131(17). 6050–6051. April. 2009.
 
[3]  Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., and Park, N. G., “6.5% efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale, 3(10). 4088-4093. September. 2011.
 
[4]  Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Baker, R. H., Moser, J.E., Grätzel, M., and Park, N.G., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Scientific reports, 2. August. 2012.
 
[5]  Lee, M. M., Teuscher, J., Miyasaka, T., and Murakami, T., “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science, 338(6107). 643-647. November. 2012.
 
[6]  Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A. K., Liu, B., Nazeeruddin, M. K., and Grätzel, M., “Mesoscopic CH3NH3PbI3 /TiO2 heterojunction solar cells”, Journal of the American Chemical Society, 134(42). 17396-17399. October. 2012.
 
[7]  Im, J. H., Chung, J., Kim, S. J., and Park, N. G., “Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3NH3PbI3)”, Nanoscale research letters, 7(1). 353. June. 2012.
 
[8]  Liu, D., and Kelly, T. L., “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques”, NATURE PHOTONICS, 8(2). 133-138. December. 2013.
 
[9]  Bi, D., Yang, L., Boschloo, G., Hagfeldt, A., and Johansson, E. M., “Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite Sensitized Mesoscopic Solar Cells”, Journal of Physical Chemistry Letters, 4 (9). 1532-1536. April. 2013.
 
[10]  Snaith, H. J., “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells”, The Journal of Physical Chemistry Letters, 4(21). 3623-3630. 2013.
 
[11]  Boix, P. P., Nonomura, K., Mathews, N., and Mhaisalkar, S. G., “Current progress and future perspectives for organic/inorganic perovskite solar cells”, Materials today, 17(1). 16-23. January/February. 2014.
 
[12]  Zhang, J., Barboux, P., and Pauporté, T., “Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid-State Perovskite-Sensitized Solar Cells”, Advanced Energy Materials, 4(18). September. 2014.
 
[13]  Nagarjuna, P., Narayanaswamy, K., Swetha, T., Rao, G. H., Singh, S. P., and Sharma, G. D., “CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material”, Electrochimica Acta, 151(1). 21-26. January. 2015.
 
[14]  Wei, H., Xiao, J., Yang, Y., Lv, S., Shi, J., Xu, X., Dong, J., Luo, Y., Li, D., and Meng, Q., “Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells”, Carbon, 93. 861-868. November. 2015.
 
[15]  Wang, K., Liu, C., Du, P., Chen, L., Zhu, J., Karim, A., and Gong, X., “Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of CH3NH3PbI3-xclx layer”, Organic Electronics, 21. 19-26. June. 2015.
 
[16]  Tao, H., Ke, W., Wang, J., Liu, Q., Wan, J., Yang, G., and Fang, G., “Perovskite solar cell based on net work nanoporous layer consisted of TiO2 nanowires and its interface optimization”, Journal of Power Sources, 290. 144-152. September. 2015.
 
[17]  Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G., and Cahen, D., “Hybrid organic–inorganic perovskites:low-cost semiconductors with intriguing charge-transport properties”, Nature Reviews Materials, 1. 15007. January. 2016.
 
[18]  Mehmood, U., Al-Ahmed, A., Afzaal, M., Al-Sulaiman, F. A., and Daud, M., “Recent progress and remaining challenges in organometallic halides based perovskite solar cells”, Renewable and Sustainable Energy Reviews, 78. 1-14. October. 2017.
 
[19]  Chen, Q., Chen, L., Ye, F., Zhao, T., Tang, F., Rajagopal, A., Jiang, Z., Jiang, S., Jen, A. K. Y., Xie, Y., Cai, J., and Chen, L., “Ag-Incorporated Organic-Inorganic Perovskite Films and Planar Heterojunction Solar Cells”, Nano Letters, 17(5). 3231-3237. March. 2017.
 
[20]  Park, N. G., “Perovskite solar cells: an emerging photovoltaic”, Materials Today, 18(2). 65-72. March. 2015.
 
[21]  Da, P., and Zheng, G., “Tailoring interface of lead-halide perovskite solar cells”, Nano Research, 10(5). 1471-1497. May. 2017.
 
[22]  Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., and Seok, S. I., “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”, Science, 348(6240). 1234-1237. June. 2015.
 
[23]  Ko, H. S., Lee, J. W., and Park, N. G., “15.76% Efficiency Perovskite Solar Cell Prepared under High Relative Humidity: Importance of PbI2 Morphology in Two-Step Deposition of CH3NH3PbI3”, Journal of Materials Chemistry A, 3(16). 8808-8815. March. 2015.
 
[24]  Huang, F., Dkhissi, Y., Huang, W., Xiao, M., Benesperi, I., Rubanov, S., Zhu, Y., Lin, X., Jiang, L., Zhou, Y., Gray-Weale, A., Etheridge, J., McNeill, C. R., Caruso, R. A., Bach, U., Spiccia, L., and Cheng, Y. B., “Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for High efficiency planar solar cells”, Nano Energy, 10. 10-18. November. 2014.
 
[25]  Yang, Z., Cai, B., Zhou, B., Yao, T. T., Yu, W., Liu, S.Z., Zhang, W. H., and Li, C., “An up-scalable approach to CH3NH3PbI3 compact Films for High-performance perovskite solar cells”, Nano Energy, 15(0). 670. December. 2015.
 
[26]  Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., Hong, Z., You, J., Liu, Y., and Yang, Y. “Interface engineering of highly efficient perovskite solar cells”, Science, 345(6196). 542-546. August. 2014.
 
[27]  Zhu, L., Shi, J., Lv, S., Yang, Y., Xu, X., Xu, Y., Xiao, J., Wu, H., Luo, Y., Li, D., and Meng, Q., “Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells”, Nano Energy, 15. 540-548. July.2015.
 
[28]  Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., and Grätzel, M., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature, 499. 316-319. July. 2013.
 
[29]  Palik, E. D and Ghosh, G. Handbook of Optical Constants of Solids, Academic Press, Orlando, 1985, 577-580.
 
[30]  S. Berthier and J. Lafait. “Modelisation des proprietes optiques des milieux inhomogenes a structure complexe”, Journal de Physique Colloques, 42 (1), Jan 1981.
 
[31]  A.M.Jayannavar and N.Kumar, “Generalization of Bruggeman's unsymmetrical effective medium theory to a three-component composite”, Physical Review, 44(21), December 1991.
 
[32]  M.Louge and M.Opie, “Measurements of the effective dielectric permittivity of suspensions”, Powder Technology, 62(1), July 1990.
 
[33]  P. Mallet, “Diffusion électromagnétique par des matériaux hétérogènes rugueux: homogénéisation et étude du couplage”, Thèse de doctorat. Aix-Marseille 3, France, 2006.
 
[34]  S. Orlowska, “Conception et prédiction des caractéristiques diélectriques des matériaux composites à deux et trois phases par la modélisation et la validation expérimentale”, Thèse de doctorat, Ecole Centrale De Lyon, France, 2003.
 
[35]  Gueye, E.H.O., Tall, P.D., Ndao, C.B., Dioum, A., Dione, A.N and Beye, A.C, “An Optical and Electrical Modeling of Dye Sensitized Solar Cell: Influence of the Thickness of the Photoactive Layer”, American Journal of Modeling and Optimization, 4(1). 13-18. 2016.
 
[36]  D. Allé “Etude en 3D de cellules photoactives organiques bicouches composées de phthalocyanine de cuivre (CuPc) et de fullerene (C60): Influence de la dissociation des excitons aux interfaces actives”, thèse de doctorat de troisième cycle, Université Cheikh Anta Diop de Dakar, Sénégal, 2010.
 
[37]  Zhao, Y., Nardes, A. M., and Zhu, K., “Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length”, Journal of Physical Chemistry Letters, 5(3). 490-494. January. 2014.
 
[38]  D’Innocenzo, V., Grancini, G., Alcocer, M. J. P., Kandada, A. R. S., Stranks, S. D., Lee, M. M., Lanzani, G., Snaith, H. J., and Petrozza, A., “Excitons versus free charges in organo-lead tri-halide perovskites”, Nature communications, 5. 3586. April. 2014.
 
[39]  Sun, X., Asadpour, R., Nie, W., Mohite, A. D., and Alam, M. A., “A physics-based analytical model for perovskite solar cells”, IEEE Journal of Photovoltaics, 5(5). 1389-1394. September 2015.
 
[40]  Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., and Huang, J., “ Electron-hole diffusion lengths >175 m in solution grown CH3NH3PbI3 single crystals”, Science, 347(6225). 967-970. February. 2015.
 
[41]  Gonzalez-Pedro, V., Juarez-Perez, E. J., Arsyad, W.-S., Barea, E. M., Fabregat-Santiago, F., Mora-Sero, I and Bisquert, J, “General Working Principles of CH3NH3PbI3 Perovskite Solar Cells”, Nano Letters, 14(2). 888-893. January. 2014.
 
[42]  Sfyri, G., Kumar, C. V., Raptis, D., Dracopoulos, V., and Lianos, P., “Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules”. Solar Energy Materials and Solar Cells, 134, 60-63. March. 2015.
 
[43]  Dione, A. N., Ndiaye, S., El Hadji Oumar Gueye, A. D., Diouf, A. A., Abderaman, M. B., Ngom, B. D., and Beye, A. C., “Optical and Electrical Modeling of a hybrid Solar Cell based on a Mesostructured Perovskite CH3NH3PbI3: Influence of the Depth and Thickness of the Photoactive Layer”, American Journal of Nanomaterials, 5(2). 68-71. December. 2017.