American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: https://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2024, 12(1), 13-24
DOI: 10.12691/ajmse-12-1-2
Open AccessArticle

Impact of Multi-Axle Wheelbases on Longitudinal and Transverse Deformations at the Bottom of Bituminous Pavement Layers

Kokoro Kobori1, Doua Allain Gnabahou1, , B. Kossi Imbga1 and Vincent Sambou2

1Laboratoire de Chimie Analytique de Physique Spatiale et Energétique (L@CAPSE), Université Norbert ZONGO, Koudougou, Burkina Faso

2Laboratoire Eau Energie, Environnement et Procédés Industriels, Ecole Supérieure Polytechnique (LE3PI), Dakar, Sénégal

Pub. Date: March 19, 2024

Cite this paper:
Kokoro Kobori, Doua Allain Gnabahou, B. Kossi Imbga and Vincent Sambou. Impact of Multi-Axle Wheelbases on Longitudinal and Transverse Deformations at the Bottom of Bituminous Pavement Layers. American Journal of Materials Science and Engineering. 2024; 12(1):13-24. doi: 10.12691/ajmse-12-1-2

Abstract

The multiplication of heavy vehicle axles is a growing phenomenon in the WAEMU (West African Economic and Monetary Union) community. The wheelbases of these new axle configurations differ from one vehicle to another. This article evaluates the impact of axle wheelbases on longitudinal and transverse deformations at the bottom of the road surface and the base layer of a roadway. To achieve this, models of the pavement structure and different axle configurations were made using ALIZE LCPC 2.3.1 software. The results obtained at the end of the numerical simulation show that the maximum deformations under stress of the wide and isolated wheels are greater than those of the twin wheels. Longitudinal deformations in contraction and extension at the bottom of the asphalt concrete (BB) road surface and the gravel bitumen (GB) base layer vary slightly depending on the wheelbases of the dual or insulated wheel axles. This variation is due to the superposition of the contraction and extension deformations of the successive wheels. As for transverse deformations, they are strongly influenced by axle wheelbases. These transverse deformations, at the bottom of the road surface, decrease during contraction and increase during extension when the axle wheelbase increases. But at the bottom of the base layer, they increase during the contraction cycle and remain almost invariable in an extension phase with the evolution of wheelbases. During the study, it was also found that the addition of axles impacts the peaks of the different deformations.

Keywords:
Wheelbases transverse deformations longitudinal deformations contraction extension

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 15

References:

[1]  MOHAMED AFECHKAR, ‘La fatigue des enrobes bitumineux, impact of the température et de la nature des granulats’, 2005, no. Figure 1.
 
[2]  Rapport, Tableau of bord 2013 du Ministère des infrastructures, du désenclavement et des transports.
 
[3]  DGNET, ‘Données Comptage Trafic Du réseau routier du Burkina Faso de 1993 à 2019’ https://espace.etsmtl.ca/id/eprint/1180
 
[4]  UEMOA, Règlement n°14/2005/CM/UEMOA relatif à l’harmonisation des normes et des procédures du contrôle du gabarit, du poids, et de la charge à l’essieu des véhicules lourds de transport de marchandises dans les états membres de l’union économique et monétaire ouest africaine (UEMOA), e-docucenter.uemoa.int, 2005.
 
[5]  Z. AMBASSA, "Towards fatigue modeling of road asphalt pavements under real load," 2013.
 
[6]  D. Bodin, A. Chabot, C. de La Roche, and G. Pijaudier-Cabot, "Fatigue damage to bituminous materials", Pem.Utbm. Fr, no. November 2014, pp. 1–5, 2002.
 
[7]  F. Homsi, D. Bodin, J. Balay, and S. Yotte, "Measurement of the response of bituminous pavements under multiaxle loading," no. June 2009, Proceedings of the 27th University Meetings of Civil Engineering.
 
[8]  Z. Ambassa, F. Allou, C. Petit, and R.-M. Eko, "Viscoelastic modeling of damage to bituminous pavements under multiple axles," pp. 120–129.
 
[9]  SETRA and LCPC, Catalog des structures types de chaussées neuves. 1998.
 
[10]  C. H. K. PAMBOU, ‘Développement d'un catalogue de conception des chaussées pour les pays Sub-Sahariens” 2013.
 
[11]  UEMOA, ‘Réunion des ministres en charges des infrastructures et des transports routiers des Etats membres of L’UEMOA for the intégral and concomitant application of the Règlement n°14/2005/CM/UEMOA of 16 décembre 2005 relatif à l’harmonisation des normes et des procédures.”
 
[12]  D. G. Civil and H. Di Benedetto, “ Modèle numérique pour comportement mécanique des chaussées : application à l’analyse de l’orniérage”, 2007.
 
[13]  A. et AIPCR, Revue du guide pratique de dimensionnement des Chaussées pour les Pays Tropicaux. 2019.
 
[14]  E. Y. Manyo, “Modélisation avancée du contact pneu-chaussée pour l’étude des dégradations des chaussées en surface”, 2019.
 
[15]  “Manuel d’utilisation du logiciel ALIZÉ-LCPC”, 2010.
 
[16]  Z. Ambassa, F. Allou, C. Petit, and R. Medjo Eko, “Évaluation de l’agressivité du trafic sur des chaussées bitumineuses en Carrefour Giratoire”, Bull. des Lab. des Ponts Chaussees, no. 280–281, pp. 171–188, 2013.
 
[17]  J. PERRET, “Déformations des couches bitumineuses au passage d’une charge de traffic”, vol. 2786, p. 263, 2003.
 
[18]  NF-P-98-086-2011, “Dimensionnement-structurel-des-chaussées-routières.pdf”.
 
[19]  J. Perre. et A.-G. Dumont, “Modélisation des charges d’essieu”, 2004.
 
[20]  N. S. DUONG, “Instrumentation de chaussées : la route intelligente qui s’auto-détecte ?”, 2017.
 
[21]  T. DIFFINÉ, “Analysis of deformations of a pavement containing cold-recycled bituminous materials", 2012.
 
[22]  M. Badiane, "Effect of loads on shoes in times of load restraint-field component," 2016.
 
[23]  C. BABILOTTE et C. SOULIE CETE, “Guide technique de conception et de dimensionnement des structures de chaussées communautaires”, Guid. Tech., 2009, [Online]. Available : www.spfrq.qc.ca
 
[24]  N. E. A. T. Adolphe Kimbonguila, Frederic Becquart, “Méthode de dimensionnement des structures de chaussées : quelle(s) adaptabilité(s) pour les matériaux granulaires alternatifs ?”, no. October 2015.
 
[25]  D. Breysse, F. Homsi, S. Yotte, J. Balay, and D. Bodin, “Utilisation du manège dans la construction d’un modèle de fatigue des chaussées sous chargement multi-essieux”, Rev. Général des routes l’aménagement2, vol. 914–915, pp. 87–92, 2013.
 
[26]  A. Chabot, O. Chupin, L. Deloffre, and D. Duhamel, “ViscoRoute 2.0 A: Tool for the Simulation of Moving Load Effects on Asphalt Pavement”, Road Mater. Pavement Des., vol. 11, no. 2, pp. 227–250, 2010.
 
[27]  J. Balay and J. Piau, “Facteurs d’endommagement des chaussées”, 2012.