American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: https://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2021, 9(1), 1-5
DOI: 10.12691/ajmse-9-1-1
Open AccessArticle

Effect of TiO2 Photoanode Films on the Performance of Dye Sensitized Solar Cell with Rauvolfia Vomitoria Fruit Extract

J. K. Datte1, , S. A. Yapi1, L. K. Kouassi1 and G. Y. T. Douhoré2

1Laboratoire de Physique de la matière condensée et technologie (LPMCT), Université Félix Houphouët Boigny, Abidjan-Cocody, Côte d’Ivoire

2Laboratoire de chimie organique et de substance naturelle (LCOSN), Université Félix Houphouët Boigny, Abidjan-Cocody, Côte d’Ivoire

Pub. Date: January 25, 2021

Cite this paper:
J. K. Datte, S. A. Yapi, L. K. Kouassi and G. Y. T. Douhoré. Effect of TiO2 Photoanode Films on the Performance of Dye Sensitized Solar Cell with Rauvolfia Vomitoria Fruit Extract. American Journal of Materials Science and Engineering. 2021; 9(1):1-5. doi: 10.12691/ajmse-9-1-1

Abstract

Dye sensitized solar cells (DSSC) were investigated using Rauvolfia vomitoria fruit extract as natural sensitized of TiO2 thin film. The cells were evaluated for various thicknesses of photoanode. The optical properties were analysed with UV-Vis spectroscopy and Fourier Transform Infrared spectroscopy (FT-IR). The morphology of the TiO2 surface was observed with a scanning electron microscope (SEM). Energy levels were estimated by cyclic voltammetry, in the presence of tetrabutalamonium tetrafluoroborate (TBATFB), in anhydrous acetonitrile solution (ACN). The results showed that the optimum thickness is 10 μm which achieved a short-circuit current density (Jsc) of 0.1 mA/cm² and an open voltage (Voc) of 0.65 V while the conversion efficiency ) is 0.055%.

Keywords:
DSSC natural dye photoanode thickness energy conversion efficiency

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  B. O’Regan et M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, vol. 353, n 6346, p. 737-740, Oct. 1991.
 
[2]  Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, et L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl. Phys., vol. 45, n 7L, p. L638, 2006.
 
[3]  G. Calogero, J.-H. Yum, A. Sinopoli, G. Di Marco, M. Grätzelb, et M. K. Nazeeruddinb, “Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells”, Sol. Energy, vol. 86, p. 1563-1575, 2012.
 
[4]  N. M. Gómez-Ortíz, I. A. Vázquez-Maldonado, A. R. Pérez-Espadas, G. J. Mena-Rejón, J. A. Azamar-Barrios, et G. Oskam, “Dye-sensitized solar cells with natural dyes extracted from achiote seeds”, Sol. Energy Mater. Sol. Cells, vol. 94, n 1, p. 40-44, Jan. 2010.
 
[5]  H. Zhou, L. Wu, Y. Gao, et T. Ma, “Dye-sensitized solar cells using 20 natural dyes as sensitizers”, J. Photochem. Photobiol. Chem., vol. 219, n 2, p. 188-194, Apr. 2011.
 
[6]  M. S. Roy, P. Balraju, M. Kumar, et G. D. Sharma, “Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2”, Sol. Energy Mater. Sol. Cells, vol. 92, n 8, p. 909-913, Aug. 2008.
 
[7]  G. Calogero et G. Di Marco, “Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, vol. 92, n 11, p. 1341-1346, 2008.
 
[8]  Z.-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, et K. Hara, “Molecular Design of Coumarin Dyes for Stable and Efficient Organic Dye-Sensitized Solar Cells”, J. Phys. Chem. C, vol. 112, n 43, p. 17011-17017, Oct. 2008.
 
[9]  K. Yoshikawa et al., “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%”, Nat. Energy, vol. 2, p. 17032, 2017.
 
[10]  D. Sengupta, P. Das, B. Mondal, et K. Mukherjee, “Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application–A review”, Renew. Sustain. Energy Rev., vol. 60, p. 356-376, 2016.
 
[11]  A. Sedghi et H. N. Miankushki, “The effect of drying and thickness of TiO2 electrodes on the photovoltaic performance of dye-sensitized solar cells”, Int J Electrochem Sci, vol. 10, p. 3354-3362, 2015.
 
[12]  J. Kumari, N. Sanjeevadharshini, M. Dissanayake, G. K. R. Senadeera, et C. A. Thotawatthage, “The effect of TiO2 photo anode film thickness on photovoltaic properties of dye-sensitized solar cells”, Ceylon J. Sci., vol. 45, n 1, 2016.
 
[13]  B. C. Ferreira, D. M. Sampaio, R. Suresh Babu, et A. L. F. de Barros, “Influence of nanostructured TiO2 film thickness in dye-sensitized solar cells using naturally extracted dye from Thunbergia erecta flowers as a photosensitizer”, Opt. Mater., vol. 86, p. 239-246, Dec. 2018.
 
[14]  E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, et O. Kurita, “Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells”, Sol. Energy, vol. 81, n 4, p. 512-516, Apr. 2007.
 
[15]  I. C. Maurya, Neetu, A. K. Gupta, P. Srivastava, et L. Bahadur, “Callindra haematocephata and Peltophorum pterocarpum flowers as natural sensitizers for TiO2 thin film based dye-sensitized solar cells”, Opt. Mater., vol. 60, p. 270-276, Oct. 2016.
 
[16]  T. Maoka, “Recent progress in structural studies of carotenoids in animals and plants”, Arch. Biochem. Biophys., vol. 483, n 2, p. 191-195, 2009.
 
[17]  S. Hao, J. Wu, Y. Huang, et J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell”, Sol. Energy, vol. 80, n 2, p. 209-214, 2006.
 
[18]  M. A. M. Al-Alwani, A. B. Mohamad, Abd. A. H. Kadhum, et N. A. Ludin, “Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications”, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 138, p. 130-137, Mar. 2015.
 
[19]  C. Kim et al., “The effect of TiO2-coating layer on the performance in nanoporous ZnO-based dye-sensitized solar cells”, J. Power Sources, vol. 232, p. 159-164, 2013.
 
[20]  M. C. Kao, H. Z. Chen, S. L. Young, C. Y. Kung, et dan C. Lin, “The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells”, Thin Solid Films, vol. 517, n 17, p. 5096-5099, 2009.
 
[21]  M. Khalili, M. Abedi, et H. S. Amoli, “Influence of saffron carotenoids and mulberry anthocyanins as natural sensitizers on performance of dye-sensitized solar cells”, Ionics, vol. 23, n 3, p. 779-787, 2017.
 
[22]  S. K. Srivastava, P. Piwek, S. R. Ayakar, A. Bonakdarpour, D. P. Wilkinson, et V. G. Yadav, “Biogenic Photovoltaics: A Biogenic Photovoltaic Material (Small 26/2018)”, Small, vol. 14, n 26, p. 1870121, 2018.
 
[23]  H. A. Maddah, V. Berry, et S. K. Behura, “Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights”, Renew. Sustain. Energy Rev., vol. 121, p. 109678, 2020.