American Journal of Medicine Studies
ISSN (Print): 2333-8881 ISSN (Online): 2333-889X Website: https://www.sciepub.com/journal/ajms Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Medicine Studies. 2014, 2(1), 19-23
DOI: 10.12691/ajms-2-1-3
Open AccessArticle

Genotype and Allele Frequencies of MDR-1 Gene Polymorphism in Jordanian and Sudanese Populations

Abdel Halim Salem1, 2, , Muhalab Ali3, Amir Ibrahim4 and Mohamed Ibrahim5

1Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain

2Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

3Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain

4Central Laboratory, Ministry of Science and Technology, Khartoum, Sudan

5College of Animal Production Science and Technology, Sudan University of Science and Technology, Khartoum, Sudan

Pub. Date: January 06, 2014

Cite this paper:
Abdel Halim Salem, Muhalab Ali, Amir Ibrahim and Mohamed Ibrahim. Genotype and Allele Frequencies of MDR-1 Gene Polymorphism in Jordanian and Sudanese Populations. American Journal of Medicine Studies. 2014; 2(1):19-23. doi: 10.12691/ajms-2-1-3

Abstract

The aim of this study was to determine the genotype and allele frequencies of MDR1 gene C3435T polymorphism in Jordanian and Sudanese populations, and to compare them with the frequencies established in various ethnic groups. Genotyping was carried out on 116 unrelated Jordanian and 131 Sudanese subjects. The genotypes of polymorphic position C3435T were determined by PCR-RFLP assay. Results showed that 20.7% of the studied Jordanian subjects were homozygous for the CC genotype, 51.7% were heterozygous for the CT genotype and 27.6% were homozygous for the TT genotype. Among Sudanese subjects, the genotype frequencies were: CC 52.7%, CT 42.0% and TT 5.3%. The frequencies of the 3435T variant in the MDR-1 Gene in Jordanians and Sudanese were found to be 0.534 and 0.263, respectively. According to the distribution of the C3435T SNP, Jordanians were resemble Asians and Europeans but were different significantly from Sudanese, while Sudanese were similar to Africans. In conclusion, the observed distribution of the C3435T SNP in the Jordanian and Sudanese populations was within the range detected in other populations. The data obtained may give the basis for predicting effects of drugs that are substrates for MDR-1 in Jordanian and Sudanese populations and may be useful for individualized therapy of some diseases.

Keywords:
Jordanian Sudanese MDR-1 p-glycoprotein polymorphism

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 1

References:

[1]  Bosch, T. M., Meijerman, I., Beijnen, J. H. and Schellens, J. H., “Genetic polymorphisms of drug-metabolising enzymes and drug transporters in the chemotherapeutic treatment of cancer,” Clin Pharmacokinet 45 (3), 253-285. 2006.
 
[2]  Wu, A. H., “Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance,” Clin Proteomics 8 (1), 12. 2011.
 
[3]  Juliano, R. L. and Ling, V., “A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants,” Biochim Biophys Acta 455 (1), 152-162. 1976.
 
[4]  Edwards, J. E., Alcorn, J., Savolainen, J., Anderson, B. D. and McNamara, P. J., “Role of P-glycoprotein in distribution of nelfinavir across the blood-mammary tissue barrier and blood-brain barrier,” Antimicrob Agents Chemother 49 (4), 1626-1628. 2005.
 
[5]  Melaine, N., Lienard, M. O., Dorval, I., Le Goascogne, C., Lejeune, H. and Jegou, B., “Multidrug resistance genes and p-glycoprotein in the testis of the rat, mouse, Guinea pig, and human,” Biol Reprod 67 (6), 1699-1707. 2002.
 
[6]  Beaulieu, E., Demeule, M., Ghitescu, L. and Beliveau, R., “P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain,” Biochem J 326 ( Pt 2), 539-544. 1997.
 
[7]  Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I. and Willingham, M. C., “Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues,” Proc Natl Acad Sci U S A 84 (21), 7735-7738. 1987.
 
[8]  Breier, A., Barancik, M., Sulova, Z. and Uhrik, B., “P-glycoprotein--implications of metabolism of neoplastic cells and cancer therapy,” Curr Cancer Drug Targets 5 (6), 457-468. 2005.
 
[9]  Jamroziak, K. and Robak, T., “Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies,” Hematology 9 (2), 91-105. 2004.
 
[10]  Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. and Gottesman, M. M., “P-glycoprotein: from genomics to mechanism,” Oncogene 22 (47), 7468-7485. 2003.
 
[11]  Komar, A. A., “Silent SNPs: impact on gene function and phenotype,” Pharmacogenomics 8 (8), 1075-1080. 2007.
 
[12]  Lu, P. H., Wei, M. X., Yang, J., Liu, X., Tao, G. Q., Shen, W. and Chen, M. B., “Association between two polymorphisms of ABCB1 and breast cancer risk in the current studies: a meta-analysis,” Breast Cancer Res Treat 125 (2), 537-543. 2011.
 
[13]  Hoffmeyer, S., Burk, O., von Richter, O., Arnold, H. P., Brockmoller, J., Johne, A., Cascorbi, I., Gerloff, T., Roots, I., Eichelbaum, M. and Brinkmann, U.,”Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo,” Proc Natl Acad Sci U S A 97 (7), 3473-3478. 2000.
 
[14]  Rubis, B., Holysz, H., Barczak, W., Gryczka, R., Lacinski, M., Jagielski, P., Czernikiewicz, A., Polrolniczak, A., Wojewoda, A., Perz, K., Bialek, P., Morze, K., Kandula, Z., Lisiak, N., Mrozikiewicz, P. M., Grodecka-Gazdecka, S. and Rybczynska, M., “Study of ABCB1 polymorphism frequency in breast cancer patients from Poland,” Pharmacol Rep 64 (6), 1560-1566. 2012.
 
[15]  Brinkmann, U., Roots, I. and Eichelbaum, M., “Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy,” Drug Discov Today 6 (16), 835-839. 2001.
 
[16]  Ameyaw, M. M., Regateiro, F., Li, T., Liu, X., Tariq, M., Mobarek, A., Thornton, N., Folayan, G. O., Githang'a, J., Indalo, A., Ofori-Adjei, D., Price-Evans, D. A. and McLeod, H. L., “MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity,” Pharmacogenetics 11 (3), 217-221. 2001.
 
[17]  Balram, C., Sharma, A., Sivathasan, C. and Lee, E. J., “Frequency of C3435T single nucleotide MDR1 genetic polymorphism in an Asian population: phenotypic-genotypic correlates,” Br J Clin Pharmacol 56 (1), 78-83. 2003.
 
[18]  Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), 1989).
 
[19]  Hamdy, S. I., Hiratsuka, M., Narahara, K., Endo, N., El-Enany, M., Moursi, N., Ahmed, M. S. and Mizugaki, M., “Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population,” Br J Clin Pharmacol 55 (6), 560-569. 2003.
 
[20]  Guo, S. W. and Thompson, E. A., “A Monte Carlo method for combined segregation and linkage analysis,” Am J Hum Genet 51 (5), 1111-1126. 1992.
 
[21]  Excoffier, L., Laval, G. and Schneider, S., “Arlequin ver. 3.0: An integrated software package for population genetics data analysis,” Evolutionary Bioinformatics online 1, 47-50. 2005.
 
[22]  Galas, D. J. and Hood, L., “Systems Biology and Emerging Technologies Will Catalyze the Transition from Reactive Medicine to Predictive, Personalized, Preventive and Participatory (P4) Medicine,” Interdisciplinary Bio Central 1: (6), 1-5. 2009.
 
[23]  Turgut, S., Yaren, A., Kursunluoglu, R. and Turgut, G., “MDR1 C3435T polymorphism in patients with breast cancer,” Arch Med Res 38 (5), 539-544. 2007.
 
[24]  Kimchi-Sarfaty, C., Marple, A. H., Shinar, S., Kimchi, A. M., Scavo, D., Roma, M. I., Kim, I. W., Jones, A., Arora, M., Gribar, J., Gurwitz, D. and Gottesman, M. M., “Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene,” Pharmacogenomics 8 (1), 29-39. 2007.
 
[25]  Khabour, O. F., Alzoubi, K. H., Al-Azzam, S. I. and Mhaidat, N. M., “Frequency of MDR1 single nucleotide polymorphisms in a Jordanian population, including a novel variant,” Genet Mol Res 12 (1), 801-808. 2013.
 
[26]  Marzolini, C., Paus, E., Buclin, T. and Kim, R. B., “Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance,” Clin Pharmacol Ther 75 (1), 13-33. 2004.
 
[27]  Gottesman, M. M., Hrycyna, C. A., Schoenlein, P. V., Germann, U. A. and Pastan, I., “Genetic analysis of the multidrug transporter,” Annu Rev Genet 29, 607-649. 1995.
 
[28]  Simon, T., Verstuyft, C., Mary-Krause, M., Quteineh, L., Drouet, E., Meneveau, N., Steg, P. G., Ferrieres, J., Danchin, N. and Becquemont, L., “Genetic determinants of response to clopidogrel and cardiovascular events,” N Engl J Med 360 (4), 363-375. 2009.
 
[29]  Shalia, K. K., Shah, V. K., Pawar, P., Divekar, S. S. and Payannavar, S., “Polymorphisms of MDR1, CYP2C19 and P2Y12 genes in Indian population: Effects on clopidogrel response,” Indian Heart J 65 (2), 158-167. 2013.
 
[30]  Su, J., Xu, J., Li, X., Zhang, H., Hu, J., Fang, R. and Chen, X., “ABCB1 C3435T polymorphism and response to clopidogrel treatment in coronary artery disease (CAD) patients: a meta-analysis,” PLoS One 7 (10), e46366. 2012.
 
[31]  Chowbay, B., Li, H., David, M., Cheung, Y. B. and Lee, E. J., “Meta-analysis of the influence of MDR1 C3435T polymorphism on digoxin pharmacokinetics and MDR1 gene expression,” Br J Clin Pharmacol 60 (2), 159-171. 2005.
 
[32]  Aarnoudse, A. J., Dieleman, J. P., Visser, L. E., Arp, P. P., van der Heiden, I. P., van Schaik, R. H., Molokhia, M., Hofman, A., Uitterlinden, A. G. and Stricker, B. H., “Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration,” Pharmacogenet Genomics 18 (4), 299-305. 2008.
 
[33]  Kimchi-Sarfaty, C., Oh, J. M., Kim, I. W., Sauna, Z. E., Calcagno, A. M., Ambudkar, S. V. and Gottesman, M. M., “A “silent” polymorphism in the MDR1 gene changes substrate specificity,” Science 315 (5811), 525-528. 2007.
 
[34]  MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk. “Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women,” Breast Cancer Res Treat 120 (3), 727-736. 2010.
 
[35]  Lü, H., Du, Z. Z., Wang, W., Wang, W., Zhao, W. L., Wang, Y., Hu, S. Y. and Chai, Y. H., “Relationship between genetic polymorphism of multidrug resistance 1 gene and the risk of childhood acute lymphocytic leukemia,” Zhonghua Er Ke Za Zhi 50 (9), 692-696. 2012.
 
[36]  Drozdzik, M., Bialecka, M., Mysliwiec, K., Honczarenko, K., Stankiewicz, J. and Sych, Z., “Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson's disease,” Pharmacogenetics 13 (5), 259-263. 2003.
 
[37]  Glas, J., Torok, H. P., Schiemann, U. and Folwaczny, C., “MDR1 gene polymorphism in ulcerative colitis,” Gastroenterology 126 (1), 367. 2004.
 
[38]  Kim, D. W., Kim, M., Lee, S. K., Kang, R. and Lee, S. Y., “Lack of association between C3435T nucleotide MDR1 genetic polymorphism and multidrug-resistant epilepsy,” Seizure 15 (5), 344-347. 2006.
 
[39]  Mihaljevic-Peles, A., Bozina, N., Sagud, M., Rojnic Kuzman, M. and Lovric, M., “MDR1 gene polymorphism: therapeutic response to paroxetine among patients with major depression,” Prog Neuropsychopharmacol Biol Psychiatry 32 (6), 1439-1444. 2008.
 
[40]  Khabour, O. F., Abdelhalim, E. S. and Abu-Wardeh, A., “Association between SOD2 T-9C and MTHFR C677T polymorphisms and longevity: a study in Jordanian population,” BMC Geriatr 9, 57. 2009.
 
[41]  Babiker, H. M., Schlebusch, C. M., Hassan, H. Y. and Jakobsson, M., “Genetic variation and population structure of Sudanese populations as indicated by 15 Identifiler sequence-tagged repeat (STR) loci,” Investig Genet 2 (1), 12. 2011.
 
[42]  Salem, A.-H., “Genotype and Allele Frequencies of MDR-1 in the Bahraini Population,” Arab Gulf Journal of Scientific Research 26 (4), 176-183. 2008.
 
[43]  Kassogue, Y., Dehbi, H., Nassereddine, S., Quachouh, M. and Nadifi, S., “Genotype variability and haplotype frequency of MDR1 (ABCB1) gene polymorphism in Morocco,” DNA Cell Biol 32 (10), 582-588. 2013.
 
[44]  Azarpira, N. and Aghdaie, M. H., “Frequency of C3435 MDR1 and A6896G CYP3A5 Single Nucleotide Polymorphism in an Iranian Population and Comparison with Other Ethnic Groups,” Medical Journal of the Islamic Republic of Iran 20 (3), 131-136. 2006.
 
[45]  Turgut, S., Turgut, G. and Atalay, E. O., “Genotype and allele frequency of human multidrug resistance (MDR1) gene C3435T polymorphism in Denizli province of Turkey,” Mol Biol Rep 33 (4), 295-300. 2006.
 
[46]  Bernal, M. L., Sinues, B., Fanlo, A. and Mayayo, E., “Frequency distribution of C3435T mutation in exon 26 of the MDR1 gene in a Spanish population,” Ther Drug Monit 25 (1), 107-111. 2003.
 
[47]  Anglicheau, D., Verstuyft, C., Laurent-Puig, P., Becquemont, L., Schlageter, M. H., Cassinat, B., Beaune, P., Legendre, C. and Thervet, E., “Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients,” J Am Soc Nephrol 14 (7), 1889-1896. 2003.
 
[48]  Ostrovsky, O., Nagler, A., Korostishevsky, M., Gazit, E. and Galski, H., “Genotype and allele frequencies of C3435T polymorphism of the MDR1 gene in various Jewish populations of Israel,” Ther Drug Monit 26 (6), 679-684. 2004.
 
[49]  Komoto, C., Nakamura, T., Sakaeda, T., Kroetz, D. L., Yamada, T., Omatsu, H., Koyama, T., Okamura, N., Miki, I., Tamura, T., Aoyama, N., Kasuga, M. and Okumura, K., “MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer,” Drug Metab Pharmacokinet 21 (2), 126-132. 2006.