American Journal of Medicine Studies
ISSN (Print): 2333-8881 ISSN (Online): 2333-889X Website: https://www.sciepub.com/journal/ajms Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Medicine Studies. 2014, 2(1), 1-11
DOI: 10.12691/ajms-2-1-1
Open AccessArticle

Immunogenicity of Leishmania Donavani Centrin-3 Vaccines

Fathiya AA Steal1 and Selman A Ali2,

1Department of Medical Laboratory, Faculty of Medical Technology, Sert University, Libya

2College of Arts and Science, School of Science & Technology, Nottingham Trent University

Pub. Date: December 30, 2013

Cite this paper:
Fathiya AA Steal and Selman A Ali. Immunogenicity of Leishmania Donavani Centrin-3 Vaccines. American Journal of Medicine Studies. 2014; 2(1):1-11. doi: 10.12691/ajms-2-1-1

Abstract

Leishmaniasis is a parasitic protozoal disease affecting humans and animals with phlebotomine sand flies as intermediate vectors. There is no effective vaccine in use against this parasite and production relies on finding potent immunogenic antigens with long lasting memory response. As part of searching for new Leishmania antigens of a potential vaccine application, the immunogenicity of L. donovani centrin-3 (Ldcen-3) was investigated in a Balb/c model. Ldcen-3 is a calcium binding protein that has been shown to be involved in duplication and segregation of the centrosome in higher and lower eukaryotes. The Ldcen-3 gene was cloned in various vectors and coated on gold particles for gene gun immunisation. Significant protection was induced by immunisation with 1μg DNA of pcDNA3.1-Ldcen-3 or pCRT7/CT-TOPO-Ldcen-3 constructs. Protection against challenge with live parasite was vector dependent where better protection was induced by pCRT7/CT-TOPO-Ldcen-3. Splenocytes from Balb/c mice immunised with pcDNA3.1-Ldcen-3 or pCRT7/CT-TOPO-Ldcen-3 had a potent CTL response against DC targets loaded with or tumour cells transfected with Ldcen-3 plasmid construct.

Keywords:
immunogenicity leishmania centrin vaccine

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 19

References:

[1]  Rodriguez-Cortes, A., Ojeda, A., Lopez-Fuertes, L., Timon, M., Altet, L., Solano-Gallego, L. (2007). Vaccination with plasmid DNA encoding KMPII, TRYP, LACK and GP63 does not protect dogs against Leishmania infantum experimental challenge. Vaccine, 25(46), 7962-7971.
 
[2]  Selvapandiyan, A., Duncan, R., Debrabant, A., Lee, N., Sreenivas, G., Salotra, P. (2006). Genetically modified live attenuated parasites as vaccines for leishmaniasis. Indian J Med Res, 123(3), 455-466.
 
[3]  Samant, M., Gupta, R., Kumari, S., Misra, P., Khare, P., Kumar, P.,Kushawaha, K, P., Sahasrabuddhe, A, A., Dube, A, A. (2009). Immunization with the DNA-Encoding N-Terminal Domain of Proteophosphoglycan of Leishmania donovani Generates Th1-Type Immunoprotective Response against Experimental Visceral Leishmaniasis. J of Immunol. 183: 470-479.
 
[4]  Baron, S. F., Franklund, C. V., & Hylemon, P. B. (1991). Cloning, sequencing, and expression of the gene coding for bile acid 7 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. J Bacteriol, 173(15), 4558-4569.
 
[5]  Errabolu, R., Sanders, M. A., & Salisbury, J. L. (1994). Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J Cell Sci, 107 (1): 9-16.
 
[6]  Judelson, H.S., Shrivastava, J. & Manson, J. (2012). Decay of Genes Encoding the Oomycete Flagellar Proteome in the Downy Mildew Hyaloperonospora arabidopsidis. PLoS ONE, 7(10), e 47624.
 
[7]  Selvapandiyan, A., Kumar, P., Morris, J. C., Salisbury, J. L., Wang, C. C., & Nakhasi, H. L. (2007). Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol Biol Cell, 18(9), 3290-3301.
 
[8]  Koblenz, B., Schoppmeier, J., Grunow, A., & Lechtreck, K. F. (2003). Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J Cell Sci, 116(13), 2635-2646.
 
[9]  Ruiz, F., Garreau de Loubresse, N., Klotz, C., Beisson, J., & Koll, F. (2005). Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr Biol, 15(23), 2097-2106.
 
[10]  Gavet, O., Alvarez, C., Gaspar, P., & Bornens, M. (2003). Centrin4p, a novel mammalian centrin specifically expressed in ciliated cells. Mol Biol Cell, 14(5), 1818-1834.
 
[11]  Khalfan, W., Ivanovska, I., & Rose, M. D. (2000). Functional interaction between the PKC1 pathway and CDC31 network of SPB duplication genes. Genetics, 155(4), 1543-1559.
 
[12]  Bhattacharya, D., Steinkotter, J., & Melkonian, M. (1993). Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants. Plant Mol Biol, 23(6), 1243-1254.
 
[13]  Selvapandiyan, A., Duncan, R., Debrabant, A., Bertholet, S., Sreenivas, G., Negi, N. S. (2001). Expression of a mutant form of Leishmania donovani centrin reduces the growth of the parasite. J Biol Chem, 276(46), 43253-43261.
 
[14]  Selvapandiyan, A., Dey, R., Nylen, S., Duncan, R., Sacks, D., Nakhasi H, L. (2009). Intracellular Replication-Deficient Leishmania donovani Induces Long Lasting Protective Immunity against Visceral Leishmaniasis Journal of Immunology. (183): 1813-1820.
 
[15]  Antoniazi, S., Lima, H. C., & Cruz, A. K. (2000). Overexpression of miniexon gene decreases virulence of Leishmania major in BALB/c mice in vivo. Mol Biochem Parasitol, 107(1), 57-69.
 
[16]  Encke, J., zu Putlitz, J., & Wands, J. R. (1999). DNA vaccines. Intervirology, 42(2-3), 117-124.
 
[17]  Ali, S. A., Rezvan, H., McArdle, S. E., Khodadadi, A., Asteal, F. A., & Rees, R. C. (2009). CTL responses to Leishmania mexicana gp63-cDNA vaccine in a murine model. Parasite Immunol, 31(7), 373-383.
 
[18]  Ivory, C., & Chadee, K. (2004). DNA vaccines: designing strategies against parasitic infections. Genet Vaccines Ther, 2(1), 17.
 
[19]  Ahmed, S. B., Bahloul, C., Robbana, C., Askri, S., & Dellagi, K. (2004). A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major. Vaccine, 22(13-14), 1631-1639.
 
[20]  Dumonteil, E., Maria Jesus, R. S., Javier, E. O., & Mariadel Rosario, G. M. (2003). DNA vaccines induce partial protection against Leishmania mexicana. Vaccine, 21(17-18), 2161-2168.
 
[21]  Kedzierski, L. (2010). Leishmaniasis Vaccine: Where are we today.Journal of Global Infectious Diseases 2(2): 177-185
 
[22]  Spier, R. E. (1996). International meeting on the nucleic acid vaccines for the prevention of infectious disease and regulating nucleic acid (DNA) vaccines. Natcher Conference Center NIH, Bethesda, MD 5-8 February, 1996. Vaccine, 14(13), 1285-1288.
 
[23]  Giri, M., Ugen, K. E., Weiner D. B., (2004). DNA Vaccines against Human Immunodeficiency Virus Type 1 in the Past Decade. Clinical Microbiology. 2(17), 370-389.
 
[24]  Selvapandiyan, A., Debrabant, A., Duncan, R., Muller, J., Salotra, P., Sreenivas, G. (2004). Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. J Biol Chem, 279(24), 25703-25710.
 
[25]  Garmory, H. S., Brown, K. A., & Titball, R. W. (2003). DNA vaccines: improving expression of antigens. Genet Vaccines Ther, 1(1), 2.
 
[26]  Ghosh, F., Hansson, L. J., Bynke, G., & Bekassy, A. N. (2002). Intravitreal sustained-release ganciclovir implants for severe bilateral cytomegalovirus retinitis after stem cell transplantation. Acta Ophthalmol Scand, 80(1), 101-104.
 
[27]  Mendez, S., Belkaid, Y., Seder, R. A., & Sacks, D. (2002). Optimization of DNA vaccination against cutaneous leishmaniasis. Vaccine, 20 (31-32), 3702-3708.
 
[28]  Conry, R. M., LoBuglio, A. F., & Curiel, D. T. (1996). Polynucleotide-mediated immunization therapy of cancer. Semin Oncol, 23(1), 135-147.
 
[29]  Sarobe, P., Huarte, E., Lasarte, J. J., Borrلs-Cuesta, F. (2004). Carcinoembryonic Antigen as a Target to Induce Anti-Tumor Immune Responses. Current Cancer Drug Targets, 4, 443-454.
 
[30]  Xu, D., & Liew, F. Y. (1995). Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology, 84(2), 173-176.
 
[31]  Trinchieri, G. (1995). Interleukin-12 and interferon-gamma. Do they always go together? Am J Pathol, 147(6), 1534-1538.
 
[32]  Barbi, J., Brombacher, F., Satoskar A. R., (2008). T cells from Leishmania major-susceptible BALB/c mice have a defect in efficiently up-regulating CXCR3 upon activation. J Immunol, 181(7): 4613-4620.
 
[33]  Horspool, J. H., Perrin, P. J., Woodcock, J. B., Cox, J. H., King, C. L., June, C. H., (1998). Nucleic acid vaccine-induced immune responses require CD28 costimulation and are regulated by CTLA4. J Immunol, 160(6), 2706-2714.
 
[34]  Morcock, D. R., Sowder, R. C., 2nd, & Casas-Finet, J. R. (2000). Role of the histidine residues of visna virus nucleocapsid protein in metal ion and DNA binding. FEBS Lett, 476(3), 190-193.
 
[35]  Jacobsen L. B., Calvin S. A., Wang, J. (2007). Transfection of PCR fragments into human tumor cells using FuGENE HD Transfection Reagent. Cell Biology,Nature Methods Applications, pp. 1-5.
 
[36]  Qin, H., Nehete, P. N., He, H., Nehete, B., Buchl, S., Cha, S. C. (2010). Prime-boost vaccination using chemokine-fused gp120 DNA and HIV envelope peptides activates both immediate and long-term memory cellular responses in rhesus macaques. J Biomed Biotechnol, 860160.
 
[37]  Gurunathan, S., Irvine, K. R., Wu, C. Y., Cohen, J. I., Thomas, E., Prussin, C., (1998). CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J Immunol, 161(9), 4563-4571.
 
[38]  Carter, K. C., Henriquez, F. L., Campbell, S. A., Roberts, C. W., Nok, A., Mullen, A. B.,. (2007). DNA vaccination against the parasite enzyme gamma-glutamylcysteine synthetase confers protection against Leishmania donovani infection. Vaccine, 25(22), 4502-4509.