[1] | Young NS, Brown KE. Parvovirus B19. New England Journal of Medicine. 2004; 350(6): 586-97. |
|
[2] | Kerr JR. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease. Journal of clinical pathology. 2016; 69(4): 279-91. |
|
[3] | Servant-Delmas A, Morinet F. Update of the human parvovirus B19 biology. Transfusion Clinique et Biologique. 2016; 23(1): 5-12. |
|
[4] | Suzuki M, Yoto Y, Ishikawa A, Tsutsumi H. Analysis of nucleotide sequences of human parvovirus B19 genome reveals two different modes of evolution, a gradual alteration and a sudden replacement: a retrospective study in Sapporo, Japan, from 1980 to 2008. Journal of virology. 2009; 83(21):10975-80. |
|
[5] | Smith-Whitley K, Zhao H, Hodinka RL, Kwiatkowski J, Cecil R, Cecil T, et al. Epidemiology of human parvovirus B19 in children with sickle cell disease. Blood. 2004; 103(2): 422-7. |
|
[6] | Gasim GI, Eltayeb R, Elhassan EM, Haggaz AD, Rayis DA, Adam I. Human parvovirus B19 and low hemoglobin levels in pregnant Sudanese women. International Journal of Gynecology & Obstetrics. 2016; 132(3): 318-20. |
|
[7] | de Jong EP, de Haan TR, Kroes AC, Beersma MF, Oepkes D, Walther FJ. Parvovirus B19 infection in pregnancy. Journal of clinical virology. 2006; 36(1): 1-7. |
|
[8] | Letalef M, Vanham G, Boukef K, Yacoub S, Muylle L, Mertens G. Higher prevalence of parvovirus B19 in Belgian as compared to Tunisian blood donors: differential implications for prevention of transfusional transmission. Transfusion science. 1997; 18(4): 523-30. |
|
[9] | Kelly H, Siebert D, Hammond R, Leydon J, Kiely P, Maskill W. The age-specific prevalence of human parvovirus immunity in Victoria, Australia compared with other parts of the world. Epidemiology and Infection. 2000; 124(03): 449-57. |
|
[10] | Anderson LJ. Role of parvovirus B19 in human disease. The Pediatric infectious disease journal. 1987; 6(8): 711-8. |
|
[11] | Pillay D, Kibbler C, Griffiths P, Hurt S, Patou G. Parvovirus B19 outbreak in a children's ward. The Lancet. 1992; 339(8785): 107-9. |
|
[12] | Serjeant GR, Mason K, Topley J, Serjeant BE, Pattison JR, Jones SE, et al. Outbreak of aplastic crises in sickle cell anaemia associated with parvovirus-like agent. The Lancet. 1981; 318(8247): 595-7. |
|
[13] | Greulich S, Kindermann I, Schumm J, Perne A, Birkmeier S, Grün S, et al. Predictors of outcome in patients with parvovirus B19 positive endomyocardial biopsy. Clinical Research in Cardiology. 2016; 105(1): 37-52. |
|
[14] | Kaufmann B, Simpson AA, Rossmann MG. The structure of human parvovirus B19. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(32): 11628-33. |
|
[15] | Bansal GP, Hatfield JA, Dunn FE, Kramer AA, Brady F, Riggin CH, et al. Candidate recombinant vaccine for human B19 parvovirus. Journal of Infectious Diseases. 1993; 167(5): 1034-44. |
|
[16] | Ballou WR, Reed JL, Noble W, Young NS, Koenig S. Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59C. 1. Journal of Infectious Diseases. 2003; 187(4): 675-8. |
|
[17] | Effio CL, Oelmeier SA, Hubbuch J. High-throughput characterization of virus-like particles by interlaced size-exclusion chromatography. Vaccine. 2016; 34(10): 1259-67. |
|
[18] | Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccines. 2014;2(3):515-36. |
|
[19] | Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nature reviews Drug discovery. 2007;6(5):404-14. |
|
[20] | Hoshino Y. Peptide-Based Immunotherapeutics and Vaccines 2015. |
|
[21] | Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic acids research. 2008;36(suppl 2):W465-W9. |
|
[22] | Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC bioinformatics. 2006;7(1):439. |
|
[23] | Hall TA, editor BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series; 1999: [London]: Information Retrieval Ltd., c1979-c2000. |
|
[24] | Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope database (IEDB) 3.0. Nucleic acids research. 2015;43(D1):D405-D12. |
|
[25] | Hasan MA, Hossain M, Alam J. A computational assay to design an epitope-based Peptide vaccine against Saint Louis encephalitis virus. Bioinformatics and Biology insights. 2013;7:347. |
|
[26] | Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome research. 2006;2(1):2. |
|
[27] | Emini EA, Hughes JV, Perlow D, Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of virology. 1985; 55(3):836-9. |
|
[28] | Kolaskar A, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS letters. 1990; 276(1-2): 172-4. |
|
[29] | Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic acids research. 2012:gks438. |
|
[30] | Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic acids research. 2008;36(suppl 2):W509-W12. |
|
[31] | Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome research. 2008; 4(1): 2. |
|
[32] | Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008; 4(4): e1000048. |
|
[33] | Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC bioinformatics. 2010; 11(1): 568. |
|
[34] | Bui H-H, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC bioinformatics. 2006; 7(1): 153. |
|
[35] | Tam JP. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proceedings of the National Academy of Sciences. 1988; 85(15): 5409-13. |
|
[36] | Arnon R, Horwitz RJ. Synthetic peptides as vaccines. Current opinion in immunology. 1992; 4(4): 449-53. |
|
[37] | van der Burg SH, Bijker MS, Welters MJ, Offringa R, Melief CJ. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Advanced drug delivery reviews. 2006; 58(8): 916-30. |
|
[38] | Chandramouli S, Medina-Selby A, Coit D, Schaefer M, Spencer T, Brito LA, et al. Generation of a parvovirus B19 vaccine candidate. Vaccine. 2013; 31(37): 3872-8. |
|
[39] | Corcoran A, Mahon BP, Doyle S. B cell memory is directed toward conformational epitopes of parvovirus B19 capsid proteins and the unique region of VP1. Journal of Infectious Diseases. 2004; 189(10): 1873-80. |
|
[40] | Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert review of vaccines. 2010; 9(2): 157-73. |
|
[41] | Klenerman P, Tolfvenstam T, Price DA, Nixon DF, Broliden K, Oxenius A. T lymphocyte responses against human parvovirus B19: small virus, big response. Pathologie Biologie. 2002; 50(5): 317-25. |
|