[1] | Mook-Kanamori, B.B., et al., Pathogenesis and pathophysiology of pneumococcal meningitis. Clinical microbiology reviews, 2011. 24(3): p. 557-591. |
|
[2] | Johnson, H.L., et al., Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med, 2010. 7(10): p. e1000348. |
|
[3] | Publication, W., Pneumococcal vaccines WHO position paper-2012–recommendations. Vaccine, 2012. 30(32): p. 4717-4718. |
|
[4] | Ginsburg, A.S., et al., Issues and challenges in the development of pneumococcal protein vaccines. Expert review of vaccines, 2012. 11(3): p. 279-285. |
|
[5] | Foster, T.J., et al., Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature Reviews Microbiology, 2014. 12(1): p. 49-62. |
|
[6] | Bergmann, S. and S. Hammerschmidt, Versatility of pneumococcal surface proteins. Microbiology, 2006. 152(2): p. 295-303. |
|
[7] | Tarahomjoo, S., Recent approaches in vaccine development against Streptococcus pneumoniae. Journal of molecular microbiology and biotechnology, 2014. 24(4): p. 215-227. |
|
[8] | Tarahomjoo, S., Bioinformatic analysis of surface proteins of Streptococcus pneumoniae serotype 19F for identification of vaccine candidates. American Journal of Microbiological Research, 2014. 2(6): p. 174-177. |
|
[9] | Novotný, J.í., et al., Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proceedings of the National Academy of Sciences, 1986. 83(2): p. 226-230. |
|
[10] | Quijada, L., et al., Mapping of the linear antigenic determinants of the Leishmania infantum hsp70 recognized by leishmaniasis sera. Immunology letters, 1996. 52(2): p. 73-79. |
|
[11] | Faria, A.R., et al., High-throughput analysis of synthetic peptides for the immunodiagnosis of canine visceral leishmaniasis. PLoS Negl Trop Dis, 2011. 5(9): p. e1310. |
|
[12] | Zhao, Z., et al., Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection. Scientific reports, 2015. 5. |
|
[13] | Lu, Y., et al., A candidate vaccine against influenza virus intensively improved the immunogenicity of a neutralizing epitope. International archives of allergy and immunology, 2002. 127(3): p. 245-250. |
|
[14] | Kelly, D.F. and R. Rappuoli, Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis, in Hot Topics in Infection and Immunity in Children II. 2005, Springer. p. 217-223. |
|
[15] | Assis, L., et al., B‐cell epitopes of antigenic proteins in Leishmania infantum: an in silico analysis. Parasite immunology, 2014. 36(7): p. 313-323. |
|
[16] | Tarahomjoo, S, In silico Analysis of Surface Proteins of Streptococcus pneumoniae Serotype 19F for Identification of Immunoprotective Epitopes. American Journal of Microbiological Research, 2015. 3 (6): p. 190-196. |
|
[17] | Andersen – Nissen, E., K. D. Smith, K. L. Strobe, et al. Evasion of toll like receptor 5 by flagellated bacteria. Proceeding of National Academy of Science USA 2005. 102 (26): p. 9247-9252. |
|
[18] | Doytchinova, I.A. and D.R. Flower, Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J, 2008. 1(1): p. 4. |
|
[19] | Puigbo, P., et al., OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic acids research, 2007. 35(suppl 2): p. W126-W131. |
|
[20] | Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research, 2003. 31(13): p. 3406-3415. |
|
[21] | Cheng J, A. Z. Randall, M. J. Sweredoski and P. Baldi, SCRATCH: a protein structure and structural feature prediction server. Nucleic acids research, 2005. 33 (suppl 2): p.W72-W76. |
|
[22] | Roy, A., A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols, 2010. 5(4): p. 725-738. |
|
[23] | Wiederstein, M. and M. J. Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research, 2007. 35 (suppl 2): p. W407-W410. |
|
[24] | Yuzhen Ye and A. Godzik. Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics, 2003. 19 (suppl 2): p. ii246-ii255. |
|
[25] | Ponomarenko J.V., et al., ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008. 9: p. 514. |
|
[26] | Li, J., et al., GC-content of synonymous codons profoundly influences amino acid usage. G3: Genes| Genomes| Genetics, 2015. 5(10): p. 2027-2036. |
|
[27] | Seo, S.W., J. Yang, and G.Y. Jung, Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli. Biotechnology and bioengineering, 2009. 104(3): p. 611-616. |
|
[28] | Singh, S.M. and A.K. Panda, Solubilization and refolding of bacterial inclusion body proteins. Journal of bioscience and bioengineering, 2005. 99(4): p. 303-310. |
|
[29] | Yin, J., et al., Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology, 2007. 127(3): p. 335-347. |
|