[1] | Aguilera, M., Quesada, M.T., del Aguila, V.G., Morillo, J.A., Rivadeneyra, M.A., Ramos-Cormenzana, A. and Monteoliva-Sa´nchez, M, “Characterization of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters”, Bioresource Technology , 99. 5640-5644. January 2008. |
|
[2] | Bonet, R., Simon-Pujol, M.D., Congregado , F, “Effects of Nutrients on Exopolysaccharide Production and Surface Properties of Aeromonas salmonicida”, Applied and environnemental microbiology, 59 (8). 2437-2441. August 1993. |
|
[3] | Boukahil, I., Czuprynski, C.J, “Characterization of Mannheimia haemolytica biofilm formation in vitro”, Veterinary Microbiology, 175. 114-122. November 2014. |
|
[4] | Bouzar, F., Cerning, J., Desmazeaud, M, “Exopolysaccharide production in milk by Lactobacillus delbrueckii ssp. bulgancus CNRZ 1187 and by two colonial variants”, Journal of Dairy Science, 79. 205-211. October 1995. |
|
[5] | Bradford, M.M, “A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding”, Anal. Biochem, 72. 248-254. January 1976. |
|
[6] | Breedveld, M.W., Zevenhuizen, L.P.T.M., Zehnder, A.J.B, “Osmotically induced oligo- and polysaccharide synthesis by Rhizobium meliloti SU-47”, Journal of General Microbiology, 136. 2511-2519. August 1990. |
|
[7] | Bryan, B.A., Linhardt, R.J., Daniels, L, “Variation in Composition and Yield of Exopolysaccharides Produced by Klebsiella sp. Strain K32 and Acinetobacter calcoaceticus BD4”, Applied and Environnemental Microbiology, 51. 1304-1308. June 1986. |
|
[8] | Castellane, T.C.L., Lemos, M.V.C., Lemos, E.G.M, “Evaluation of the biotechnological potential of Rhizobium tropici strains for exopolysaccharide production”, Carbohydrate Polymers, 111. 191-197. April 2014. |
|
[9] | Cerning, J., Renard, C.M.G.C., Thibault, J.F., Bouillanne, C., Landon, M., Desmazeaud, M, and Topisirovic L, “Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer”, Applied and Environnemental Microbiology , 60. 3914–3919. November 1994. |
|
[10] | Collins, M.D., Lund, B.M., Farrow, J.A., Schleifer, K.H, “Chemotaxonomic study of an alkaliphilic bacterium Exiguobacterium aurantiacum gen-nov sp-nov”, Journal of General Microbiology, 129. 2037-2042. January 1993 |
|
[11] | De Vuyst, L., Vanderveken, E., Van de Ven, S., Degeest, B, “Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis”, Journal of Applied Microbiology, 84. 1059-1068. November 1998 |
|
[12] | Donot, F., Fontana, A., Baccou, J.C., and Schorr-Galindo, S, “Microbial exopolysaccharides: Main examples of synthesis, excretion genetics and extraction”, Carbohydrate Polymers, 87. 951-962. January 2012 |
|
[13] | Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F, “Colorimetric method for determination of sugars and related substances”, Anal. Chem, 28. 350-356. March 1956 |
|
[14] | Gong, W.X., Wang, S.G., Sun , X.F., Liu, X.W.,, Yue, Q.Y., Gao, B.Y, (2008) “Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment”, Bioresource Technology, 99. 4668–4674. January 2008 |
|
[15] | Ipper, N.S., Cho, S., Lee, S.H., Cho, J.M., Hur, J.H., and Lim, C.K., “Antiviral Activity of the Exopolysaccharide Produced by Serratia sp. Strain Gsm 01 against Cucumber Mosaic Virus”, Journal of Microbiology and Biotechnology, 18(1). 67-73. July 2008. |
|
[16] | Iyer, A., Mody, K., Jha, B, “Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae”, Marine Pollution Bulletin, 49. 974–977. December 2004. |
|
[17] | Jeswani, H., Mukherji, S, “Batch studies with Exiguobacterium aurantiacum degradind structurally diverse organic compounds and its potential for treatment of biomass gasification wastewater”, International Biodeterioration & Biodegradation, 80.1-9. March 2013. |
|
[18] | Kalin, M., wheeler, W.N., Meinrath, G, “The removal of uranium from mining waste water using algal/microbial biomass”, Journal of Environmental radioactivity, 78. 151-177. January 2005. |
|
[19] | Llamas, I., Mata, J.A., Tallon, R., Bressollier, P., Urdac, M.C, Quesada, E and Béjar, V, “Characterization of the Exopolysaccharide Produced by Salipiger mucosus A3T, a Halophilic Species Belonging to the Alphaproteobacteria, Isolated on the Spanish Mediterranean Seaboard”, Marine Drugs, 8. 2240-2251. July 2010 |
|
[20] | Mozzi, F., Savoy de Giori, G., Oliver, G., Font De Valdez, G, “ Effect of culture pH on the growth characteristics and polysaccharide production of Lactobacillus casei”, Milchwissenschaft, 12 (49). 667-670. 1994. |
|
[21] | Mozzi, F., Savoy de Giori, G., Oliver, G., Font de Valdez, G, “Exopolysaccharide production by Lactobacillus casei. II. Influence of the carbon source”, Milchwissenschaft, 50. 307-309. 1995. |
|
[22] | Osman, M.E., El-Shouny, W., Talat, R., El-Zahaby, H, “Polysaccharides production from some Pseudomonas syringae pathovars as affected by different types of culture media”, Journal of microbiology Biotechnology & food sciences, 1(5). 1305-1318. 2012. |
|
[23] | Pham, P.L., Dupont, I., Roy, D., Lapointe, G., Cerning, J, “Production of exopolysaccharide by Lactobacillus rhamnosus and analysis of its enzymatic degradation during prolonged fermentation”, Appl. Environ. Microbiol, 66. 2302-2310. 2000 |
|
[24] | Sandal, I., Inzana, T.J., Molinaro, A., De Castro, C., Shao, J.Q., Apicella, M.A., Cox, A.D., St Michael, F., Berg, G, “Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somni during biofilm formation”, BMC Microbiol, 11. 186. August 2011 |
|
[25] | Vijayabaskar, P., Babinastarlin, S., Shankar, T., Sivakumar, T., Anandapandian, K.T.K, “Quantification and Characterization of Exopolysaccharides from Bacillus subtilis (MTCC 121)”, Advances in Biological Research, 5(2). 71-76. January 2011. |
|