American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Microbiological Research. 2023, 11(1), 1-13
DOI: 10.12691/ajmr-11-1-1
Open AccessArticle

Evaluation of Antifungal Properties of Botanical Extracts in the Management of Common Spoilage Fungi of Rice (Oryza sativa L.)

Ousman Sarlia Dorley1, 2, , Javan Omondi Were1, Julius Onyango Ochuodho1 and Elmada Odeny Auma1

1Department of Seed, Crop and Horticultural Sciences, School of Agriculture, University of Eldoret, Eldoret, Kenya

2Department of General Agriculture, University of Liberia, Capitol Hill, Liberia

Pub. Date: February 02, 2023

Cite this paper:
Ousman Sarlia Dorley, Javan Omondi Were, Julius Onyango Ochuodho and Elmada Odeny Auma. Evaluation of Antifungal Properties of Botanical Extracts in the Management of Common Spoilage Fungi of Rice (Oryza sativa L.). American Journal of Microbiological Research. 2023; 11(1):1-13. doi: 10.12691/ajmr-11-1-1


Rice is the staple food in Liberia and cultivated throughout the country. Spoilage fungi are responsible for great losses during storage and this threatens the country’s food security. This study sought to evaluate the suitability of plant extracts as alternative management option against this problem. Rice samples were obtained from four main rice growing counties (Nimba, Montserrado, Bong’ and Lofa) and taken to the University of Eldoret seed science lab for the isolation of fungal contaminants. Randomly selected rice grains were surface sterilized using Sodium hypochlorite and placed on Potato dextrose agar (PDA) to isolate spoilage fungi. Botanical aqueous extracts were prepared from common bean ash, neem, ginger, chilli, and garlic. Six fungi were isolated from the rice seeds (arranged in the order of prevalence; Aspergillus niger, A. flavus, Penicillium sp, Pyricularia oryzae, and Fusarium sp). The bean ash was the most effective botanical extract achieving 100% inhibition for all the fungi tested except Fusarium sp. Fusarium sp was the most resistant fungal pathogen with the best inhibition towards it imparted by the synthetic fungicide (tebuconazole) at 56% inhibition. All the botanical extracts used in the study should be further explored as possible sources of more sustainable disease management.

fungi liberia rice yield seed sources extracts fungicide

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 13


[1]  Pathak, N., & , & Zaidi, R. K. (2013). Studies on seed-borne fungi of wheat in seed health testing programme. Archives of Phytopathology and Plant Protection, 46(4), 389-401.
[2]  Hilson, G., & Bockstael, S. V. (2012). Poverty and Livelihood Diversification in Rural Liberia: Exploring the Linkages between Artisanal Diamond Mining and Smallholder Rice Production. The Journal of Developmental Studies, 48(3).
[3]  Chauhan, B. S., Jabran, K., & Mahajan, G. (2017). Rice Production Worldwide. Switzerland: Springer International Publishing AG.
[4]  Ashmun, J. (2020). Liberia. Retrieved from
[5]  Republic of Liberia. (2019). Food Fortification Initiative: Enhancing Grains for Healthier Lives. Liberia: Republic of Liberia.
[6]  Vorrath, J. (2018). What drives post-war crime? Evidence from Illicit Economies in Liberia and Sierra Leone. Third World Thematics: A TWQ Journal, 3(1).
[7]  Centers for Disease Control and Prevention (CDC. (2004). Outbreak of aflatoxin poisoning--eastern and central provinces, Kenya, January-July 2004. MMWR. Morbidity and mortality weekly report, 53(34), 790-793.
[8]  Boxall, A. B., Hardy, A., Beulke, S., Boucard, T., Burgin, L., Falloon, P. D., . . . Leonardi, G. (2009). Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environmental health perspectives, 117(4), 508-514.
[9]  Zubrod, J. P., Bundschuh, M., Arts, G., Brühl, C. A., Imfeld, G., Knäbel, A., . . . Scharmüller, A. (2019). Fungicides: an overlooked pesticide class? Environmental Science & Technology, 53(7), 3347-3365.
[10]  Strange, R. N., & Scott, P. R. (2005). Plant disease: a threat to global food security. Annu. Rev. Phytopathol., 43, 83-116.
[11]  Hakala, K., Hannukkala, A., Huusela-Veistola, E., Jalli, M., & Peltonen-Sainio, P. (2011). Pests and diseases in a changing climate a major challenge for Finnish crop production. Agricultural and Food Science, 20(1), 3-14.
[12]  Yang, L.-N., He, M.-H., Ouyang, H.-B., Zhu, W., Pan, Z.-C., Sui, Q.-J., . . . Zhan, J. (2019). Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC microbiology, 19(1), 1-10.
[13]  Bereswill, R., Streloke, M., & Schulz, R. (2013). Current‐use pesticides in stream water and suspended particles following runoff: Exposure, effects, and mitigation requirements. Environmental toxicology and chemistry, 32(6), 1254-1263.
[14]  Nesheim, M. C., Oria, M., Yih, P. T., on Agriculture, B., Resources, N., & Council, N. R. (2015). Social and Economic Effects of the US Food System. In A Framework for Assessing Effects of the Food System: National Academies Press (US).
[15]  Barratt, B., Moran, V., Bigler, F., & Van Lenteren, J. (2018). The status of biological control and recommendations for improving uptake for the future. BioControl, 63(1), 155-167.
[16]  Yaremenko, I. A., Syromyatnikov, M. Y., Radulov, P. S., Belyakova, Y. Y., Fomenkov, D. I., Popov, V. N., & Terent’ev, A. O. (2020). Cyclic Synthetic Peroxides Inhibit Growth of Entomopathogenic Fungus Ascosphaera apis without Toxic Effect on Bumblebees. Molecules, 25(8), 1954.
[17]  Majeed, A., Muhammad, Z., Ahmad, H., Islam, S., Ullah, Z., & Ullah, R. (2017). Late blight of potato (Phytophthora infestans) II: Employing integrated approaches in late blight disease management. PSM Biol. Res, 2(3), 117-123.
[18]  Kim, K., Lee, Y., Ha, A., Kim, J.-I., Park, A. R., Yu, N. H., . . . Lee, C. W. (2017). Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12. Frontiers in plant science, 8, 2010.
[19]  Grover, R. K., & Moore, J. D. (1962). Toximetric studies of Fungicides against Brown rot organisms, Sclerotinia fructicola AND S-LAXA. Phytopathology, 52(9), 876-+.
[20]  Mannaa, M., Oh, J. Y., & Kim, K. D. (2017). Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and aflatoxin production on stored rice grains. Mycobiology, 45(3), 213-219.
[21]  Gonçalves, A., Gkrillas, A., Dorne, J. L., Dall'Asta, C., Palumbo, R., Lima, N., . . . Giorni, P. (2019). Pre‐and postharvest strategies to minimize mycotoxin contamination in the rice food chain. Comprehensive Reviews in Food Science and Food Safety, 18(2), 441-454.
[22]  Nzabarinda, V., Bao, A., Xu, W., Uwamahoro, S., Udahogora, M., Umwali, E. D., . . . Umuhoza, J. (2021). A spatial and temporal assessment of vegetation greening and precipitation changes for monitoring vegetation dynamics in climate zones over Africa. ISPRS International Journal of Geo-Information, 10(3), 129.
[23]  Shanakht, H., Shahid, A. A., & Ali, S. W. (2014). Characterization of fungal microbiota on rice grains from local markets of Lahore. Journal of Hygienic Engineering and Design, 9, 35-40.
[24]  Natabirwa, H., Muyonga, J. H., Nakimbugwe, D., & Lungaho, M. (2018). Physico‐chemical properties and extrusion behaviour of selected common bean varieties. Journal of the Science of Food and Agriculture, 98(4), 1492-1501.
[25]  Wong, J. H., & Ng, T. B. (2005). Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). The International Journal of Biochemistry & Cell Biology, 37(8), 1626-1632.
[26]  Ng, T., & Ye, X. (2003). Fabin, a novel calcyon-like and glucanase-like protein with mitogenic, antifungal and translation-inhibitory activities from broad beans. In: Walter de Gruyter.
[27]  Games, P. D., Dos Santos, I. S., Mello, É. O., Diz, M. S., Carvalho, A. O., de Souza-Filho, G. A., . . . Gomes, V. M. (2008). Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides, 29(12).
[28]  Wu, X., Sun, J., Zhang, G., Wang, H., & Ng, T. B. (2011). An antifungal defensin from Phaseolus vulgaris cv. Cloud Bean. Phytomedicine, 18(2-3), 104-109.
[29]  Fieira, C., Oliveira, F., Calegari, R. P., Machado, A., & Coelho, A. R. (2013). In vitro and in vivo antifungal activity of natural inhibitors against Penicillium expansum. Ciência e Tecnologia de Alimentos, 33, 40-46.
[30]  Wilson, P., Ahvenniemi, P., Lehtonen, M., Kukkonen, M., Rita, H., & Valkonen, J. (2008). Biological and chemical control and their combined use to control different stages of the Rhizoctonia disease complex on potato through the growing season. Annals of Applied Biology, 153(3), 307-320.
[31]  Hossen, M. T., Sohag, M. A. S., & Monjil, M. S. (2017). Comparative efficacy of garlic, BAU-biofungicide, Bavistin and Tilt on seed borne fungal flora in chilli. Journal of the Bangladesh Agricultural University, 15(1), 41-46.
[32]  Hosseini, S., Amini, J., Saba, M. K., Karimi, K., & Pertot, I. (2020). Preharvest and postharvest application of garlic and rosemary essential oils for controlling anthracnose and quality assessment of strawberry fruit during cold storage. Frontiers in Microbiology, 11(1855), 1-15.
[33]  L. G., Muturi, P. W., Gichimu, B. M., & Njoroge, E. K. (2020). Mugao of Phytophthora infestans and Alternaria solani using crude extracts and essential oils from selected plants. International Journal of Agronomy, 2020, 1-10.
[34]  Linquist, B. A., Liu, L., van Kessel, C., & van Groenigen, K. J. (2013). Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crops Research, 154, 246-254.
[35]  Mahmud, H., & Hossain, I. (2017). Comparative efficacy of BAU-Biofungicide and synthetic fungicides in management of diseases of rice (Oryza sativa L.) for quality seed production. Brazilian Journal of Botany, 40(2), 389-397.
[36]  Acharya, P., Mir, S. A., & Nayak, B. (2017). Competence of biopesticide and neem in agriculture. International Journal of Environment, Agriculture and Biotechnology, 2(6), 238987.
[37]  Polo, K. J. J., Campos, H. L. M., Olivera, C. C., Nakayo, J. L. J., & Flores, J. W. V. (2021). Biofungicide for the Control of Botrytis Cinerea and Fusarium Oxysporum: a Laboratory Study. Chemical Engineering Transactions, 87, 517-522.
[38]  Bordoh, P. K., Ali, A., Dickinson, M., & Siddiqui, Y. (2020). Antimicrobial effect of rhizome and medicinal herb extract in controlling postharvest anthracnose of dragon fruit and their possible phytotoxicity. Scientia Horticulturae, 265(109249), 1-11.
[39]  El Khetabi, A., Lahlali, R., Ezrari, S., Radouane, N., Nadia, L., Banani, H., . . . Barka, E. A. (2022). Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: a review. Trends in Food Science & Technology, 120, 402-417.