[1] | Brooks, L.R.K., Mias, G.I., “Streptococcus pneumoniae’s virulence and host immunity: Aging, diagnostics, and prevention.” Front. Immunol., (June 2018), 9. |
|
[2] | Bandaranayake, T., Shaw, A.C., “Host resistance and immune aging.” Clin. Geriatr. Med., (August 2016), 32, 415-432. |
|
[3] | Pinti, M., Appay, V., Campisi, J., Frasca, D., et al., “Aging of the immune system: Focus on inflammation and vaccination.” Eur. J. Immunol., (October 2016), 46, 2286-2301. |
|
[4] | Blumental, S., Granger-Farbos, A., Moïsi, J.C., Soullié, B., et al., “Virulence factors of Streptococcus pneumoniae. Comparison between African and French invasive isolates and implication for future vaccines.” PLoS One, (July 2015), 10. |
|
[5] | Infante, A.J., McCullers, J.A., Orihuela, C.J., in:, Streptococcus Pneumoniae Molecular. Mechanism. Host-Pathogen Interact., (2015), pp. 363-382. |
|
[6] | Geno, K.A., Gilbert, G.L., Song, J.Y., Skovsted, I.C., et al., “Pneumococcal capsules and their types: Past, present, and future.” Clin. Microbiol. Rev., (2015), 28, 871-899. |
|
[7] | Keller, L.E., Robinson, D.A., McDaniel, L.S., “Nonencapsulated Streptococcus pneumoniae: Emergence and pathogenesis.” MBio, (2016), 7. |
|
[8] | Antoni, T., Blasi, F., Dartois, N., Akova, M., “Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease.” Thorax, (2015), 70, 984-989. |
|
[9] | Albrich, W.C., Monnet, D.L., Harbarth, S., “Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes.” Emerg. Infect. Dis., (2004), 10, 514-517. |
|
[10] | Henrichsen, J., “Six newly recognized types of Streptococcus pneumoniae.” J. Clin. Microbiol., (1995), 33, 2759-2762. |
|
[11] | Hoffman, J.A., Mason, E.O., Schutze, G.E., Tan, T.Q., et al., “Streptococcus pneumoniae nfections in the neonate.” Pediatrics, (2003), 112, 1095-1102. |
|
[12] | Zafar, M.A., Wang, Y., Hamaguchi, S., Weiser, J.N., “Host-to-host transmission of Streptococcus pneumoniae is driven by its inflammatory toxin, pneumolysin.” Cell Host Microbe, (2017), 21, 73-83. |
|
[13] | Klein, E.Y., Monteforte, B., Gupta, A., Jiang, W., et al., “The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis.” Influenza Other Respi. Viruses, (September 2016), 10, 394-403. |
|
[14] | Short, K.R., Reading, P.C., Wang, N., Diavatopoulos, D.A., Wijburg, O.L., “Increased nasopharyngeal bacterial titers and local inflammation facilitate transmission of Streptococcus pneumoniae.” MBio, (2012), 3. |
|
[15] | Rabes, A., Suttorp, N., Opitz, B., in, Curr. Top. Microbiol. Immunol., vol. 397, Springer Verlag, (July 2016), pp. 215-227. |
|
[16] | Tomasz, A., “Surface components of streptococcus pneumoniae.” Rev. Infect. Dis., (1981), 3, 190-211. |
|
[17] | Gisch, N., Peters, K., Zähringer, U., Vollmer, W., in:, Streptococcus Pneumoniae Mol. Mech. Host-Pathogen Interact., (2015), pp. 145-167. |
|
[18] | Gay, K., Stephens, D.S., “Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae.” J. Infect. Dis., (2001), 184, 56-65. |
|
[19] | Marshall, J.E., Faraj, B.H.A., Gingras, A.R., Lonnen, R., et al., “The crystal structure of pneumolysin at 2.0 Å resolution reveals the molecular packing of the pre-pore complex.” Sci. Rep., (2015), 5. |
|
[20] | Rai, P., He, F., Kwang, J., Engelward, B.P., Chow, V.T.K., “Pneumococcal pneumolysin induces DNA damage and cell cycle arrest.” Sci. Rep., (2016), 6. |
|
[21] | Berry, A.M., Yother, J., Briles, D.E., Hansman, D., Paton, J.C., “Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae.” Infect. Immun., (1989), 57, 2037-2042. |
|
[22] | Pérez-Dorado, I., Galan-Bartual, S., Hermoso, J.A., “Pneumococcal surface proteins: When the whole is greater than the sum of its parts.” Mol. Oral Microbiol., (August 2012), 27, 221-245. |
|
[23] | Galán-Bartual, S., Pérez-Dorado, I., García, P., Hermoso, J.A., in:, Streptococcus Pneumoniae Mol. Mech. Host-Pathogen Interact., (2015), pp. 207-230. |
|
[24] | Xu, Q., Zhang, J.W., Chen, Y., Li, Q., Jiang, Y.L., “Crystal structure of the choline-binding protein CbpJ from Streptococcus pneumoniae.” Biochem. Biophys. Res. Commun., (2019), 514, 1192-1197. |
|
[25] | Kohler, S., Voß, F., Gómez Mejia, A., Brown, J.S., Hammerschmidt, S., “Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion.” FEBS Lett., (2016), 590, 3820-3839. |
|
[26] | Löfling, J., Vimberg, V., Battig, P., Henriques-Normark, B., “Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues.” Cell. Microbiol., (February 2011), 13, 186-197. |
|
[27] | Yang, X.Y., He, K., Du, G., Wu, X., et al., “Integrated translatomics with proteomics to identify novel iron-transporting proteins in Streptococcus pneumoniae.” Front. Microbiol., (February 2016), 7. |
|
[28] | Hilleringmann, M., Giusti, F., Baudner, B.C., Masignani, V., et al., “Pneumococcal pili are composed of protofilaments exposing adhesive clusters of Rrg A.” PLoS Pathog., (March 2008), 4. |
|
[29] | Chi, Y.C., Rahkola, J.T., Kendrick, A.A., Holliday, M.J., et al., “Streptococcus pneumoniae IgA1 protease: A metalloprotease that can catalyze in a split manner in vitro.” Protein Sci., (March 2017), 26, 600-610. |
|
[30] | Janoff, E.N., Rubins, J.B., Fasching, C., Charboneau, D., et al., “Pneumococcal IgA1 protease subverts specific protection by human IgA1.” Mucosal Immunol., (2014), 7, 249-256. |
|
[31] | Loose, M., Hudel, M., Zimmer, K.P., Garcia, E., et al., “Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes.” J. Infect. Dis., (2015), 211, 306-316. |
|
[32] | Rai, P., Parrish, M., Tay, I.J.J., Li, N., et al., “Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells.” Proc. Natl. Acad. Sci. U. S. A., (2015), 112, E3421-E3430. |
|
[33] | Lizcano, A., Akula Suresh Babu, R., Shenoy, A.T., Saville, A.M., et al., “Transcriptional organization of pneumococcal psrP-secY2A2 and impact of GtfA and GtfB deletion on PsrP-associated virulence properties.” Microbes Infect., (2017), 19, 323-333. |
|
[34] | Oliver, M.B., Swords, W.E., in:, Streptococcus pneumoniae Mol. Mech. Host-Pathogen Interact., (2015), pp. 293-308. |
|
[35] | Marks, L.R., Iyer Parameswaran, G., Hakansson, A.P., “Pneumococcal interactions with epithelial cells are crucial for optimal biofilm formation and colonization in vitro and in vivo.” Infect. Immun., (2012), 80, 2744-2760. |
|
[36] | Shak, J.R., Vidal, J.E., Klugman, K.P., “Influence of bacterial interactions on pneumococcal colonization of the nasopharynx.” Trends Microbiol., (2013), 21, 129-135. |
|
[37] | Mizrachi-Nebenzahl, Y., Lifshitz, S., Teitelbaum, R., Novick, S., et al., “Differential activation of the immune system by virulent Streptococcus pneumoniae strains determines recovery or death of the host.” Clin. Exp. Immunol., (October 2003), 134, 23-31. |
|
[38] | Murphy, K., Weaver, C., Janeway, C., Janeway’s immunobiology, (2017). |
|
[39] | Mahdi, L.K., Deihimi, T., Zamansani, F., Fruzangohar, M., et al., “A functional genomics catalogue of activated transcription factors during pathogenesis of pneumococcal disease.” BMC Genomics, (August 2014), 15. |
|
[40] | Simon, A.K., Hollander, G.A., McMichael, A., “Evolution of the immune system in humans from infancy to old age.” Proc. R. Soc. B Biol. Sci., (December 2015), 282. |
|
[41] | Yuste, J., Sen, A., Truedsson, L., Jönsson, G., et al., “Impaired opsonization with C3b and phagocytosis of Streptococcus pneumoniae in sera from subjects with defects in the classical complement pathway.” Infect. Immun., (2008), 76, 3761-3770. |
|
[42] | Inomata, M., Xu, S., Chandra, P., Meydani, S.N., et al., “Macrophage LC3-associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging.” Proc. Natl. Acad. Sci. U. S. A., (2021), 117, 33561-33569. |
|
[43] | Lanzilli, G., Falchetti, R., Cottarelli, A., Macchi, A., et al., “In vivo effect of an immunostimulating bacterial lysate on human B lymphocytes.” Int. J. Immunopathol. Pharmacol., (2006), 19, 551-559. |
|
[44] | Wang, J., Barke, R.A., Ma, J., Charboneau, R., Roy, S., “Opiate abuse, innate immunity, and bacterial infectious diseases.” Arch. Immunol. Ther. Exp. (Warsz)., (October 2008), 56, 299-309. |
|
[45] | Janesch, P., Stulik, L., Rouha, H., Varga, C., et al., “Age-related changes in the levels and kinetics of pulmonary cytokine and chemokine responses to Streptococcus pneumoniae in mouse pneumonia models.” Cytokine, (2018), 111, 389-397. |
|
[46] | Hampton, L.M., Farley, M.M., Schaffner, W., Thomas, A., et al., “Prevention of antibiotic-nonsusceptible Streptococcus pneumoniae with conjugate vaccines.” J. Infect. Dis., (2012), 205, 401-411. |
|
[47] | Kim, L., McGee, L., Tomczyk, S., Beall, B., “Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: A United States perspective.” Clin. Microbiol. Rev., (2016), 29, 525-552. |
|