American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: https://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2021, 9(2), 44-49
DOI: 10.12691/ajmr-9-2-2
Open AccessArticle

Current Understanding on the Virulence and Immune Response of Streptococcus Pneumoniae: A Critical Appraisal

Mahendra Pal1, , Adugna Girma Lema2, Mati Roba Bulcha3 and Getahun Duguma Jeto3

1Narayan Consultancy on Veterinary Public Health and Microbiology, Anand, Gujarat, India

2Wolmera Woreda Animal Health Profession, West Shoa, Oromia, Ethiopia

3Yemalog Walal Woreda Livestock and Fishery Development and Resource Office, Kellem Wollega Zone, Oromia, Ethiopia

Pub. Date: May 20, 2021

Cite this paper:
Mahendra Pal, Adugna Girma Lema, Mati Roba Bulcha and Getahun Duguma Jeto. Current Understanding on the Virulence and Immune Response of Streptococcus Pneumoniae: A Critical Appraisal. American Journal of Microbiological Research. 2021; 9(2):44-49. doi: 10.12691/ajmr-9-2-2

Abstract

Infectious diseases present a significant health burden affecting the immunocompromised as well as immunocompetent subjects throughout the world. Most of these diseases are due to the invasion of the host cells and organs by the microorganisms. Common widespread diseases of the respiratory system occur when the organisms invade the respiratory tract of the host. The infectious respiratory diseases are globally observed as a major health concern because they can rapidly become severe and lead to death. Streptococcus pneumoniae is a medically important bacterium that has been commonly linked to causing respiratory infections in individuals with a weakened immune system. Streptococcus pneumoniae, also known as pneumococcus, can survive in both aerobic and anaerobic conditions. The organism has the potential to produce pneumonia, bacteremia, meningitis, acute otitis media, and sinusitis. It colonizes the upper respiratory tract particularly the nasopharynx. Streptococcus pneumoniae, like many other bacterial species, produce toxins that are harmful to its host, has several surface proteins and physical structures, which play a very crucial role in its pathogenesis.

Keywords:
bacterium immune response infection meningitis pneumonia streptococcus pneumoniae virulence

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Brooks, L.R.K., Mias, G.I., “Streptococcus pneumoniae’s virulence and host immunity: Aging, diagnostics, and prevention.” Front. Immunol., (June 2018), 9.
 
[2]  Bandaranayake, T., Shaw, A.C., “Host resistance and immune aging.” Clin. Geriatr. Med., (August 2016), 32, 415-432.
 
[3]  Pinti, M., Appay, V., Campisi, J., Frasca, D., et al., “Aging of the immune system: Focus on inflammation and vaccination.” Eur. J. Immunol., (October 2016), 46, 2286-2301.
 
[4]  Blumental, S., Granger-Farbos, A., Moïsi, J.C., Soullié, B., et al., “Virulence factors of Streptococcus pneumoniae. Comparison between African and French invasive isolates and implication for future vaccines.” PLoS One, (July 2015), 10.
 
[5]  Infante, A.J., McCullers, J.A., Orihuela, C.J., in:, Streptococcus Pneumoniae Molecular. Mechanism. Host-Pathogen Interact., (2015), pp. 363-382.
 
[6]  Geno, K.A., Gilbert, G.L., Song, J.Y., Skovsted, I.C., et al., “Pneumococcal capsules and their types: Past, present, and future.” Clin. Microbiol. Rev., (2015), 28, 871-899.
 
[7]  Keller, L.E., Robinson, D.A., McDaniel, L.S., “Nonencapsulated Streptococcus pneumoniae: Emergence and pathogenesis.” MBio, (2016), 7.
 
[8]  Antoni, T., Blasi, F., Dartois, N., Akova, M., “Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease.” Thorax, (2015), 70, 984-989.
 
[9]  Albrich, W.C., Monnet, D.L., Harbarth, S., “Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes.” Emerg. Infect. Dis., (2004), 10, 514-517.
 
[10]  Henrichsen, J., “Six newly recognized types of Streptococcus pneumoniae.” J. Clin. Microbiol., (1995), 33, 2759-2762.
 
[11]  Hoffman, J.A., Mason, E.O., Schutze, G.E., Tan, T.Q., et al., “Streptococcus pneumoniae nfections in the neonate.” Pediatrics, (2003), 112, 1095-1102.
 
[12]  Zafar, M.A., Wang, Y., Hamaguchi, S., Weiser, J.N., “Host-to-host transmission of Streptococcus pneumoniae is driven by its inflammatory toxin, pneumolysin.” Cell Host Microbe, (2017), 21, 73-83.
 
[13]  Klein, E.Y., Monteforte, B., Gupta, A., Jiang, W., et al., “The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis.” Influenza Other Respi. Viruses, (September 2016), 10, 394-403.
 
[14]  Short, K.R., Reading, P.C., Wang, N., Diavatopoulos, D.A., Wijburg, O.L., “Increased nasopharyngeal bacterial titers and local inflammation facilitate transmission of Streptococcus pneumoniae.” MBio, (2012), 3.
 
[15]  Rabes, A., Suttorp, N., Opitz, B., in, Curr. Top. Microbiol. Immunol., vol. 397, Springer Verlag, (July 2016), pp. 215-227.
 
[16]  Tomasz, A., “Surface components of streptococcus pneumoniae.” Rev. Infect. Dis., (1981), 3, 190-211.
 
[17]  Gisch, N., Peters, K., Zähringer, U., Vollmer, W., in:, Streptococcus Pneumoniae Mol. Mech. Host-Pathogen Interact., (2015), pp. 145-167.
 
[18]  Gay, K., Stephens, D.S., “Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae.” J. Infect. Dis., (2001), 184, 56-65.
 
[19]  Marshall, J.E., Faraj, B.H.A., Gingras, A.R., Lonnen, R., et al., “The crystal structure of pneumolysin at 2.0 Å resolution reveals the molecular packing of the pre-pore complex.” Sci. Rep., (2015), 5.
 
[20]  Rai, P., He, F., Kwang, J., Engelward, B.P., Chow, V.T.K., “Pneumococcal pneumolysin induces DNA damage and cell cycle arrest.” Sci. Rep., (2016), 6.
 
[21]  Berry, A.M., Yother, J., Briles, D.E., Hansman, D., Paton, J.C., “Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae.” Infect. Immun., (1989), 57, 2037-2042.
 
[22]  Pérez-Dorado, I., Galan-Bartual, S., Hermoso, J.A., “Pneumococcal surface proteins: When the whole is greater than the sum of its parts.” Mol. Oral Microbiol., (August 2012), 27, 221-245.
 
[23]  Galán-Bartual, S., Pérez-Dorado, I., García, P., Hermoso, J.A., in:, Streptococcus Pneumoniae Mol. Mech. Host-Pathogen Interact., (2015), pp. 207-230.
 
[24]  Xu, Q., Zhang, J.W., Chen, Y., Li, Q., Jiang, Y.L., “Crystal structure of the choline-binding protein CbpJ from Streptococcus pneumoniae.” Biochem. Biophys. Res. Commun., (2019), 514, 1192-1197.
 
[25]  Kohler, S., Voß, F., Gómez Mejia, A., Brown, J.S., Hammerschmidt, S., “Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion.” FEBS Lett., (2016), 590, 3820-3839.
 
[26]  Löfling, J., Vimberg, V., Battig, P., Henriques-Normark, B., “Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues.” Cell. Microbiol., (February 2011), 13, 186-197.
 
[27]  Yang, X.Y., He, K., Du, G., Wu, X., et al., “Integrated translatomics with proteomics to identify novel iron-transporting proteins in Streptococcus pneumoniae.” Front. Microbiol., (February 2016), 7.
 
[28]  Hilleringmann, M., Giusti, F., Baudner, B.C., Masignani, V., et al., “Pneumococcal pili are composed of protofilaments exposing adhesive clusters of Rrg A.” PLoS Pathog., (March 2008), 4.
 
[29]  Chi, Y.C., Rahkola, J.T., Kendrick, A.A., Holliday, M.J., et al., “Streptococcus pneumoniae IgA1 protease: A metalloprotease that can catalyze in a split manner in vitro.” Protein Sci., (March 2017), 26, 600-610.
 
[30]  Janoff, E.N., Rubins, J.B., Fasching, C., Charboneau, D., et al., “Pneumococcal IgA1 protease subverts specific protection by human IgA1.” Mucosal Immunol., (2014), 7, 249-256.
 
[31]  Loose, M., Hudel, M., Zimmer, K.P., Garcia, E., et al., “Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes.” J. Infect. Dis., (2015), 211, 306-316.
 
[32]  Rai, P., Parrish, M., Tay, I.J.J., Li, N., et al., “Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells.” Proc. Natl. Acad. Sci. U. S. A., (2015), 112, E3421-E3430.
 
[33]  Lizcano, A., Akula Suresh Babu, R., Shenoy, A.T., Saville, A.M., et al., “Transcriptional organization of pneumococcal psrP-secY2A2 and impact of GtfA and GtfB deletion on PsrP-associated virulence properties.” Microbes Infect., (2017), 19, 323-333.
 
[34]  Oliver, M.B., Swords, W.E., in:, Streptococcus pneumoniae Mol. Mech. Host-Pathogen Interact., (2015), pp. 293-308.
 
[35]  Marks, L.R., Iyer Parameswaran, G., Hakansson, A.P., “Pneumococcal interactions with epithelial cells are crucial for optimal biofilm formation and colonization in vitro and in vivo.” Infect. Immun., (2012), 80, 2744-2760.
 
[36]  Shak, J.R., Vidal, J.E., Klugman, K.P., “Influence of bacterial interactions on pneumococcal colonization of the nasopharynx.” Trends Microbiol., (2013), 21, 129-135.
 
[37]  Mizrachi-Nebenzahl, Y., Lifshitz, S., Teitelbaum, R., Novick, S., et al., “Differential activation of the immune system by virulent Streptococcus pneumoniae strains determines recovery or death of the host.” Clin. Exp. Immunol., (October 2003), 134, 23-31.
 
[38]  Murphy, K., Weaver, C., Janeway, C., Janeway’s immunobiology, (2017).
 
[39]  Mahdi, L.K., Deihimi, T., Zamansani, F., Fruzangohar, M., et al., “A functional genomics catalogue of activated transcription factors during pathogenesis of pneumococcal disease.” BMC Genomics, (August 2014), 15.
 
[40]  Simon, A.K., Hollander, G.A., McMichael, A., “Evolution of the immune system in humans from infancy to old age.” Proc. R. Soc. B Biol. Sci., (December 2015), 282.
 
[41]  Yuste, J., Sen, A., Truedsson, L., Jönsson, G., et al., “Impaired opsonization with C3b and phagocytosis of Streptococcus pneumoniae in sera from subjects with defects in the classical complement pathway.” Infect. Immun., (2008), 76, 3761-3770.
 
[42]  Inomata, M., Xu, S., Chandra, P., Meydani, S.N., et al., “Macrophage LC3-associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging.” Proc. Natl. Acad. Sci. U. S. A., (2021), 117, 33561-33569.
 
[43]  Lanzilli, G., Falchetti, R., Cottarelli, A., Macchi, A., et al., “In vivo effect of an immunostimulating bacterial lysate on human B lymphocytes.” Int. J. Immunopathol. Pharmacol., (2006), 19, 551-559.
 
[44]  Wang, J., Barke, R.A., Ma, J., Charboneau, R., Roy, S., “Opiate abuse, innate immunity, and bacterial infectious diseases.” Arch. Immunol. Ther. Exp. (Warsz)., (October 2008), 56, 299-309.
 
[45]  Janesch, P., Stulik, L., Rouha, H., Varga, C., et al., “Age-related changes in the levels and kinetics of pulmonary cytokine and chemokine responses to Streptococcus pneumoniae in mouse pneumonia models.” Cytokine, (2018), 111, 389-397.
 
[46]  Hampton, L.M., Farley, M.M., Schaffner, W., Thomas, A., et al., “Prevention of antibiotic-nonsusceptible Streptococcus pneumoniae with conjugate vaccines.” J. Infect. Dis., (2012), 205, 401-411.
 
[47]  Kim, L., McGee, L., Tomczyk, S., Beall, B., “Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: A United States perspective.” Clin. Microbiol. Rev., (2016), 29, 525-552.