American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: https://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2020, 8(4), 110-116
DOI: 10.12691/ajmr-8-4-1
Open AccessArticle

Optimization of Culture Conditions for Enhanced Bacteriocin Production by Lactococcus lactis MT186647 Using Response Surface Methodology

Onwuakor C.E.1, , Ogbulie J.N.2, Braide W.2, Ogbulie T.E.3, Nwokafor C.V.1 and Uchendu C.E.4

1Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria

2Department of Microbiology, School of Biological Sciences, Federal University of Technology, Owerri, Imo State, Nigeria

3Department of Biotechnology, School of Biological Sciences, Federal University of Technology, Owerri, Imo State, Nigeria

4Department of Statistics, College of Physical Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria

Pub. Date: September 29, 2020

Cite this paper:
Onwuakor C.E., Ogbulie J.N., Braide W., Ogbulie T.E., Nwokafor C.V. and Uchendu C.E.. Optimization of Culture Conditions for Enhanced Bacteriocin Production by Lactococcus lactis MT186647 Using Response Surface Methodology. American Journal of Microbiological Research. 2020; 8(4):110-116. doi: 10.12691/ajmr-8-4-1

Abstract

Bacteriocins produced by various lactic acid bacteria (LAB) have found enormous use in the food industries as biopreservatives. This study evaluated the effect of varied culture conditions (temperature, pH, and NaCl concentration) on bacteriocin production by Lactococcus lactis MT186647 isolated from fermenting African oil bean seeds (Pentaclethra macrophylla Benth) using response surface methodology. A three-factor central composite design (CCD) was adopted with the interest of estimating the optimal conditions for its production using the response surface regression model, which evaluated the linear, squared, and interactive relationship between the response variables. The analysis of variance (ANOVA) using Minitab statistical software version 14.13 showed an R2 = 0.869 variations in the response variable for culture conditions. It was accounted for by the predictors suggesting that the model was adequate. The optimal culture condition for bacteriocin production by L. lactis was estimated at 30.5C, pH 5.9, 1.94% NaCl concentration at Y = 12.31 mm where Y represents the response (zone of inhibition) against Staphylococcus aureus ATCC 19095 using the agar well diffusion assay method. Validation of optimal values according to the regression model, produced an inhibition zone at Y = 13.33 ± 0.29 mm. There was a 19.33% increase in bacteriocin activity compared to an OFAT optimized medium from a previous study.

Keywords:
Lactococcus lactis MT186647 Bacteriocin optimization central composite design response surface methodology

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., Camarero, J. A., Campopiano, D. J., Challis, G. L., Clardy, J., Cotter, P. D., Craik, D. J., Dawson, M., Dittmann, E., Donadio, S., Dorrestein, P. C., Entian, K. D., Fischbach, M. A., Garavelli, J. S., … Van Der Donk, W. A., Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Natural Product Reports, 30(1). 108-160. 2013.
 
[2]  Papagianni, M., Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnology Advances, 21(6). 465-499. 2003.
 
[3]  Elayaraja, S., Annamalai, N., Mayavu, P., and Balasubramanian, T., Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pacific Journal of Tropical Biomedicine, 4. 305-311. 2014.
 
[4]  Shelburne, C. E., An, F. Y., Dholpe, V., Ramamoorthy, A., Lopatin, D. E., and Lantz, M. S., The spectrum of antimicrobial activity of the bacteriocin subtilosin A. Journal of Antimicrobial Chemotherapy, 59(2). 297-300. 2007.
 
[5]  Egan, K., Ross, R. P., and Hill, C., Bacteriocins: antibiotics in the age of the microbiome. Emerging Topics in Life Sciences, 1(1). 55-63. 2017.
 
[6]  Nigam, A., Gupta, D., and Sharma, A., Treatment of infectious disease: Beyond antibiotics. Microbiological Research, 169 (9-10). 643-651. 2014.
 
[7]  García, P., Rodríguez, L., Rodríguez, A., and Martínez, B., Food biopreservation: Promising strategies using bacteriocins, bacteriophages and endolysins. Trends in Food Science and Technology, 21(8). 373-382. 2010.
 
[8]  Parada, J. L., Caron, C. R., Medeiros, A. B. P., and Soccol, C. R., Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology, 50(3). 521-542. 2007.
 
[9]  Chapot-Chartier, M. P., and Kulakauskas, S., Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 13(11). 59-81. 2014.
 
[10]  König, H., and Fröhlich, J., Lactic acid bacteria. In: Biology of Microorganisms on Grapes, in Must and Wine. Springer International Publishing. 2017, 3-41.
 
[11]  Abbasiliasi, S., Tan, J. S., Tengku Ibrahim, T. A., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S., and Ariff, A. B., Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Advances, 7(47). 29395-29420. 2017.
 
[12]  Bogovic Matijasic, B., Rogelj, I., Batič, M., and Raspor, P., Influence of pH on bacteriocin production by Lactobacillus K7 during batch fermentation. Periodicum Biologorum, 103(2). 163-167. 2001.
 
[13]  Himelbloom, B., Nilsson, L., and Gram, L., Factors affecting production of an antilisterial bacteriocin by Carnobacterium piscicola strain A9b in laboratory media and model fish systems. Journal of Applied Microbiology, 91(3). 506-513. 2001.
 
[14]  Onwuakor, C.E., Nwaugo, V.O., Nnadi, C.J., and Emetole, J.M., Effect of Varied Culture Conditions on Crude Supernatant (Bacteriocin) Production from Four Lactobacillus Species Isolated from Locally Fermented Maize (Ogi). American Journal of Microbiological Research, 2(5), 125-130. 2014.
 
[15]  Castro, M. P., Palavecino, N. Z., Herman, C., Garro, O. A., and Campos, C. A., Lactic acid bacteria isolated from artisanal dry sausages: Characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Meat Science, 87(4). 321-329. 2011.
 
[16]  Todorov, S. D., and Dicks, L. M. T., Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. World Journal of Microbiology and Biotechnology, 20(6). 643-650. 2004.
 
[17]  Vázquez, J. A., Cabo, M. L., González, M. P., and Murado, M. A., The role of amino acids in nisin and pediocin production by two lactic acid bacteria: A factorial study. Enzyme and Microbial Technology, 34(3-4). 319-325. 2004.
 
[18]  Kumar, M., Jain, A. K., Ghosh, M., and Ganguli, A., Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei. Biotechnology and Bioprocess Engineering, 17(3). 606-616. 2012.
 
[19]  Radha, K. R., and Padmavathi, T., Statistical optimization of bacteriocin produced from Lactobacillus delbrueckii subsp bulgaricus isolated from yoghurt. International Food Research Journal, 24(2). 803-809. 2007.
 
[20]  Yolmeh, M., and Jafari, S. M., Applications of Response Surface Methodology in the Food Industry Processes. Food and Bioprocess Technology, 10(3). 413-433. 2017.
 
[21]  Kaur, B., Garg, N., and Sachdev, A., Optimization of bacteriocin production in Pediococcus acidilactici BA28 using response surface methodology. Asian Journal of Pharmaceutical and Clinical Research, 6(SUPPL.1), 192-195. 2013.
 
[22]  Nikbakht Kashkooli, T., Joyandeh, H., Tahmoozi Dide Ban, S., and Samavati, V., Optimizing of the production process of synbiotic dahi containing Lactobacillus acidophilus, tragacanth and inulin using Surface Response Methodology. Food Science and Technology, 14(62). 103-189. 2017.
 
[23]  Lee, Y. M., Kim, J. S., and Kim, W. J., Optimization for the maximum bacteriocin production of Lactobacillus brevis DF01 using response surface methodology. Food Science and Biotechnology, 21(3). 653-659. 2012.
 
[24]  Le, N. T. T., Bach, L. G., Nguyen, D. C., Le, T. H. X., Pham, K. H., Nguyen, D. H., and Thi, T. T. H., Evaluation of factors affecting antimicrobial activity of bacteriocin from Lactobacillus plantarum microencapsulated in alginate-gelatin capsules and its application on pork meat as a bio-preservative. International Journal of Environmental Research and Public Health, 16(6). 2019.
 
[25]  Tulini, F. L., Gomes, B. C., and Martinis, E. C. P. de., Partial purification and characterization of a bacteriocin produced by Enterococcus faecium 130 isolated from mozzarella cheese. Ciência e Tecnologia de Alimentos, 31(1). 155-159. 2011.
 
[26]  Delgado, A., Brito, D., Fevereiro, P., Tenreiro, R., and Peres, C., Bioactivity quantification of crude bacteriocin solutions. Journal of Microbiological Methods, 62(1). 121-124. 2005.
 
[27]  Suganthi, V., and Mohanasrinivasan, V., Optimization studies for enhanced bacteriocin production by Pediococcus pentosaceus KC692718 using response surface methodology. Journal of Food Science and Technology, 52(6). 3773-3783. 2015.
 
[28]  Cladera-Olivera, F., Caron, G. R., and Brandelli, A., Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal, 21(1). 53-58. 2004.
 
[29]  Sarabia, L. A., and Ortiz, M. C., Response Surface Methodology. Comprehensive Chemometrics, 1. 345-390. 2009.
 
[30]  Wang, L., Zhang, M., Li, Y., Cui, Y., Zhang, Y., Wang, Z., Wang, M., and Huang, Y., Application of response surface methodology to optimize the production of antimicrobial metabolites by Micromonospora Y15. Biotechnology and Biotechnological Equipment, 31(5). 1016-1025. 2017.
 
[31]  Ogunbanwo, S. T., Sanni, A. I., and Onilude, A. A., Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African Journal of Biotechnology, 2(8), 223-235. 2003.
 
[32]  Malheiros, P. S., Sant’Anna, V., Todorov, S. D., and Franco, B. D. G. M., Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. Sakei 2a. Brazilian Journal of Microbiology, 46(3). 825-834. 2015.
 
[33]  Leães, F. L., Vanin, N. G., Sant’Anna, V., and Brandelli, A., Use of Byproducts of Food Industry for Production of Antimicrobial Activity by Bacillus sp. P11. Food and Bioprocess Technology, 4(5). 822-828. 2011.
 
[34]  Monafathia, N.R., M., and Widanarni., Optimization of bacteriocin production from Lactobacillus plantarum IN05 by using response surface methodology. Pakistan Journal of Biotechnology, 15(3). 785-791. 2018.