[1] | Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., Camarero, J. A., Campopiano, D. J., Challis, G. L., Clardy, J., Cotter, P. D., Craik, D. J., Dawson, M., Dittmann, E., Donadio, S., Dorrestein, P. C., Entian, K. D., Fischbach, M. A., Garavelli, J. S., … Van Der Donk, W. A., Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Natural Product Reports, 30(1). 108-160. 2013. |
|
[2] | Papagianni, M., Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnology Advances, 21(6). 465-499. 2003. |
|
[3] | Elayaraja, S., Annamalai, N., Mayavu, P., and Balasubramanian, T., Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pacific Journal of Tropical Biomedicine, 4. 305-311. 2014. |
|
[4] | Shelburne, C. E., An, F. Y., Dholpe, V., Ramamoorthy, A., Lopatin, D. E., and Lantz, M. S., The spectrum of antimicrobial activity of the bacteriocin subtilosin A. Journal of Antimicrobial Chemotherapy, 59(2). 297-300. 2007. |
|
[5] | Egan, K., Ross, R. P., and Hill, C., Bacteriocins: antibiotics in the age of the microbiome. Emerging Topics in Life Sciences, 1(1). 55-63. 2017. |
|
[6] | Nigam, A., Gupta, D., and Sharma, A., Treatment of infectious disease: Beyond antibiotics. Microbiological Research, 169 (9-10). 643-651. 2014. |
|
[7] | García, P., Rodríguez, L., Rodríguez, A., and Martínez, B., Food biopreservation: Promising strategies using bacteriocins, bacteriophages and endolysins. Trends in Food Science and Technology, 21(8). 373-382. 2010. |
|
[8] | Parada, J. L., Caron, C. R., Medeiros, A. B. P., and Soccol, C. R., Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology, 50(3). 521-542. 2007. |
|
[9] | Chapot-Chartier, M. P., and Kulakauskas, S., Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 13(11). 59-81. 2014. |
|
[10] | König, H., and Fröhlich, J., Lactic acid bacteria. In: Biology of Microorganisms on Grapes, in Must and Wine. Springer International Publishing. 2017, 3-41. |
|
[11] | Abbasiliasi, S., Tan, J. S., Tengku Ibrahim, T. A., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S., and Ariff, A. B., Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Advances, 7(47). 29395-29420. 2017. |
|
[12] | Bogovic Matijasic, B., Rogelj, I., Batič, M., and Raspor, P., Influence of pH on bacteriocin production by Lactobacillus K7 during batch fermentation. Periodicum Biologorum, 103(2). 163-167. 2001. |
|
[13] | Himelbloom, B., Nilsson, L., and Gram, L., Factors affecting production of an antilisterial bacteriocin by Carnobacterium piscicola strain A9b in laboratory media and model fish systems. Journal of Applied Microbiology, 91(3). 506-513. 2001. |
|
[14] | Onwuakor, C.E., Nwaugo, V.O., Nnadi, C.J., and Emetole, J.M., Effect of Varied Culture Conditions on Crude Supernatant (Bacteriocin) Production from Four Lactobacillus Species Isolated from Locally Fermented Maize (Ogi). American Journal of Microbiological Research, 2(5), 125-130. 2014. |
|
[15] | Castro, M. P., Palavecino, N. Z., Herman, C., Garro, O. A., and Campos, C. A., Lactic acid bacteria isolated from artisanal dry sausages: Characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Meat Science, 87(4). 321-329. 2011. |
|
[16] | Todorov, S. D., and Dicks, L. M. T., Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. World Journal of Microbiology and Biotechnology, 20(6). 643-650. 2004. |
|
[17] | Vázquez, J. A., Cabo, M. L., González, M. P., and Murado, M. A., The role of amino acids in nisin and pediocin production by two lactic acid bacteria: A factorial study. Enzyme and Microbial Technology, 34(3-4). 319-325. 2004. |
|
[18] | Kumar, M., Jain, A. K., Ghosh, M., and Ganguli, A., Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei. Biotechnology and Bioprocess Engineering, 17(3). 606-616. 2012. |
|
[19] | Radha, K. R., and Padmavathi, T., Statistical optimization of bacteriocin produced from Lactobacillus delbrueckii subsp bulgaricus isolated from yoghurt. International Food Research Journal, 24(2). 803-809. 2007. |
|
[20] | Yolmeh, M., and Jafari, S. M., Applications of Response Surface Methodology in the Food Industry Processes. Food and Bioprocess Technology, 10(3). 413-433. 2017. |
|
[21] | Kaur, B., Garg, N., and Sachdev, A., Optimization of bacteriocin production in Pediococcus acidilactici BA28 using response surface methodology. Asian Journal of Pharmaceutical and Clinical Research, 6(SUPPL.1), 192-195. 2013. |
|
[22] | Nikbakht Kashkooli, T., Joyandeh, H., Tahmoozi Dide Ban, S., and Samavati, V., Optimizing of the production process of synbiotic dahi containing Lactobacillus acidophilus, tragacanth and inulin using Surface Response Methodology. Food Science and Technology, 14(62). 103-189. 2017. |
|
[23] | Lee, Y. M., Kim, J. S., and Kim, W. J., Optimization for the maximum bacteriocin production of Lactobacillus brevis DF01 using response surface methodology. Food Science and Biotechnology, 21(3). 653-659. 2012. |
|
[24] | Le, N. T. T., Bach, L. G., Nguyen, D. C., Le, T. H. X., Pham, K. H., Nguyen, D. H., and Thi, T. T. H., Evaluation of factors affecting antimicrobial activity of bacteriocin from Lactobacillus plantarum microencapsulated in alginate-gelatin capsules and its application on pork meat as a bio-preservative. International Journal of Environmental Research and Public Health, 16(6). 2019. |
|
[25] | Tulini, F. L., Gomes, B. C., and Martinis, E. C. P. de., Partial purification and characterization of a bacteriocin produced by Enterococcus faecium 130 isolated from mozzarella cheese. Ciência e Tecnologia de Alimentos, 31(1). 155-159. 2011. |
|
[26] | Delgado, A., Brito, D., Fevereiro, P., Tenreiro, R., and Peres, C., Bioactivity quantification of crude bacteriocin solutions. Journal of Microbiological Methods, 62(1). 121-124. 2005. |
|
[27] | Suganthi, V., and Mohanasrinivasan, V., Optimization studies for enhanced bacteriocin production by Pediococcus pentosaceus KC692718 using response surface methodology. Journal of Food Science and Technology, 52(6). 3773-3783. 2015. |
|
[28] | Cladera-Olivera, F., Caron, G. R., and Brandelli, A., Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal, 21(1). 53-58. 2004. |
|
[29] | Sarabia, L. A., and Ortiz, M. C., Response Surface Methodology. Comprehensive Chemometrics, 1. 345-390. 2009. |
|
[30] | Wang, L., Zhang, M., Li, Y., Cui, Y., Zhang, Y., Wang, Z., Wang, M., and Huang, Y., Application of response surface methodology to optimize the production of antimicrobial metabolites by Micromonospora Y15. Biotechnology and Biotechnological Equipment, 31(5). 1016-1025. 2017. |
|
[31] | Ogunbanwo, S. T., Sanni, A. I., and Onilude, A. A., Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African Journal of Biotechnology, 2(8), 223-235. 2003. |
|
[32] | Malheiros, P. S., Sant’Anna, V., Todorov, S. D., and Franco, B. D. G. M., Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. Sakei 2a. Brazilian Journal of Microbiology, 46(3). 825-834. 2015. |
|
[33] | Leães, F. L., Vanin, N. G., Sant’Anna, V., and Brandelli, A., Use of Byproducts of Food Industry for Production of Antimicrobial Activity by Bacillus sp. P11. Food and Bioprocess Technology, 4(5). 822-828. 2011. |
|
[34] | Monafathia, N.R., M., and Widanarni., Optimization of bacteriocin production from Lactobacillus plantarum IN05 by using response surface methodology. Pakistan Journal of Biotechnology, 15(3). 785-791. 2018. |
|