[1] | Jenkins, G. (1985). Barley. Outlook on Agriculture, 14(2), 61-67. |
|
[2] | McLean, M. S., Howlett, B. J., & Hollaway, G. J. (2009). Epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: a review. Crop and Pasture Science, 60(4), 303-315. |
|
[3] | Liu, Z., Ellwood, S. R., Oliver, R. P., & Friesen, T. L. (2011). Pyrenophora teres: profile of an increasingly damaging barley pathogen. Molecular Plant Pathology, 12(1), 1-19. |
|
[4] | Lightfoot, D. J., & Able, A. J. (2010). Growth of Pyrenophora teres in planta during barley net blotch disease. Australasian Plant Pathology, 39(6), 499-507. |
|
[5] | Smedegård-Petersen, V. (1971). Pyrenophora teres f. maculata f. nov. and Pyrenophora teres f. teres on barley in Denmark. In Kgl Vet Landbohojsk Arsskr. |
|
[6] | Sarpeleh, A., Wallwork, H., Catcheside, D. E., Tate, M. E., & Able, A. J. (2007). Proteinaceous metabolites from Pyrenophora teres contribute to symptom development of barley net blotch. Phytopathology, 97. |
|
[7] | Steffenson, B., Hayes, P., & Kleinhofs, A. (1996). Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. TAG Theoretical and Applied Genetics, 92(5), 552-558. |
|
[8] | Mathre, D. E. (1997). Compendium of Barley Diseases. American Phytopathological Society: St Paul MN. |
|
[9] | Murray, G. M., & Brennan, J. P. (2010). Estimating disease losses to the Australian barley industry. Aust Plant Pathol, 39. |
|
[10] | Arzanlou, M., Bakhshi, M., Karimi, K., & Torbati, M. (2015). Multigene phylogeny reveals three new records of Colletotrichum spp. and several new host records for the mycobiota of Iran. Journal of Plant Protection Research, 55(2), 198-211. |
|
[11] | Zhan, J., Fitt, B. D. L., Pinnschmidt, H. O., Oxley, S. J. P., & Newton, A. C. (2008). Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathology, 57(1), 1-14. |
|
[12] | OLIVER, R. P., & IPCHO, S. V. (2004). Arabidopsis pathology breathes new life into the necrotrophs-vs. -biotrophs classification of fungal pathogens. Molecular Plant Pathology, 5(4), 347-352. |
|
[13] | Stefansson, T. S., Willi, Y., Croll, D., & McDonald, B. A. (2014). An assay for quantitative virulence in Rhynchosporium commune reveals an association between effector genotype and virulence. Plant Pathology, 63(2), 405-414. |
|
[14] | Owino, A., Ochuodho, J., Were, J., & Rop, N. (2014). Response of spring and winter Barley to Pyrenophora teres under high and medium altitude zones of Kenya. International Journal of Research in Agriculture and Food Sciences, 2(2), 1-10. |
|
[15] | Owino, A., Ochuodho, J., & Were, J. (2013). Morphological diversity of Net Blotch Fungi (Pyrenophora teres) infecting barley (H. vulgare) in barley growing areas of Kenya. Journal of Experimental Biology and Agricultural Sciences., 1. |
|
[16] | Cieślik, E., Sadowska-Rociek, A., Surma, M., & Topolska, K. (2014). Quality and safety of food. AGROECOLOGY, 131. |
|
[17] | Lusenaka, E. (2017, February 16). Tax policies killing Kenya’s agro-industry. THE Standard, p. 15. |
|
[18] | Lal, S., & Tabacchioni, S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian Journal of Microbiology, 49(1), 2-10. |
|
[19] | Lal, S., Romano, S., Chiarini, L., Signorini, A., & Tabacchioni, S. (2012). The Paenibacillus polymyxa species is abundant among hydrogen-producing facultative anaerobic bacteria in Lake Averno sediment. Archives of Microbiology, 194(5), 345-351. |
|
[20] | Huang, E., & Yousef, A. E. (2012). Draft genome sequence of Paenibacillus polymyxa OSY-DF, which coproduces a lantibiotic, paenibacillin, and polymyxin E1. Journal of Bacteriology, 194(17), 4739-4740. |
|
[21] | Caruso, F., Zuck, M., & Bessette, A. (1984). Bacterial seedling blight of tomato caused by Bacillus polymyxa [Isolation and identification]. Plant Diseases (USA). |
|
[22] | Makumba, B., Mwamburi, L., & Kiprop, E. (2016). Management of sorghum anthracnose using bio-control agents produced by sorghum rhizobacteria in western Kenya. University of Eldoret. |
|
[23] | Abang, M. M., Baum, M., Ceccarelli, S., Grando, S., Linde, C. C., Yahyaoui, A., … McDonald, B. A. (2006). Differential selection on Rhynchosporium secalis during parasitic and saprophytic phases in the barley scald disease cycle. Phytopathology, 96(11), 1214-1222. |
|
[24] | Darna, R., Purnamasari, M., Agustina, D., Pramudito, T., Sugiharti, M., & Suwanto, A. (2016). A strong Anti-fungal producing bacteria from Bamboo powder for Bio-control of Sclerotium rolsfii in Melon Cucumis melo var. amanta. Journal of Plant Pathology and Microbiology., 7(2). |
|
[25] | Wang, N. N., Yan, X., Gao, X. N., Niu, H. J., Kang, Z. S., & Huang, L. L. (2016). Purification and characterization of a potential antifungal protein from Bacillus subtilis E1R-J against Valsa mali. World Journal of Microbiology and Biotechnology, 32(4). |
|
[26] | Fernando, W. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955-964. |
|
[27] | Hyvonen, T. (2011). Impact of temperature and germination time on the success of a C4 weed in a C3 crop: Amaranthus retroflexus and spring barley. Agriculltural and Food Science, 20, 183-190. |
|
[28] | Guarro, J., Pujol, I., Aguilar, C., Llop, C., & Fernández-Ballart, J. (1998). Inoculum preparation for in-vitro susceptibility testing of filamentous fungi. Journal of Antimicrobial Chemotherapy, 42(3), 385-387. |
|
[29] | Morris, S., & Nicholls, J. (1978). An evaluation of optical density to estimate fungal spore concentrations in water suspensions. Strain, 1, 1240-1242. |
|
[30] | Jorgensen, H., Andresen, H., & Smedegaard-Petersen, V. (1996). Control of Drechslera teres and other barley pathogens by preinoculation with Bipolaris maydis and Septoria nodorum. Phytopathology, 86(6), 602-607. |
|
[31] | Leelasuphakul, W., Hemmanee, P., & Chuenchitt, S. (2008). Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology, 48(1), 113-121. |
|
[32] | Lee, S. H., Cho, Y. E., Park, S.-H., Balaraju, K., Park, J. W., Lee, S. W., & Park, K. (2013). An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica, 41(1), 49-58. |
|
[33] | Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H., & Pée, K. van. (2000). Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Management Science, 56(8), 688–695. |
|
[34] | Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127-136. |
|
[35] | Combès, A., Ndoye, I., Bance, C., Bruzaud, J., Djediat, C., Dupont, J., … Prado, S. (2012). Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS One, 7(10), e47313. |
|
[36] | Marmann, A., Aly, A. H., Lin, W., Wang, B., & Proksch, P. (2014). Co-cultivation—A powerful emerging tool for enhancing the chemical diversity of microorganisms. Marine Drugs, 12(2), 1043-1065. |
|
[37] | Hunziker, L., Bönisch, D., Groenhagen, U., Bailly, A., Schulz, S., & Weisskopf, L. (2015). Pseudomonas Strains Naturally Associated with Potato Plants Produce Volatiles with High Potential for Inhibition of Phytophthora infestans. Applied and Environmental Microbiology, 81(3), 821-830. |
|
[38] | Vinodkumar, S., Nakkeeran, S., Renukadevi, P., & Malathi, V. G. (2017). Biocontrol Potentials of Antimicrobial Peptide Producing Bacillus Species: Multifaceted Antagonists for the Management of Stem Rot of Carnation Caused by Sclerotinia sclerotiorum. Frontiers in Microbiology, 8, 446. |
|