[1] | O’Regan, B., Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353-737, 1991. |
|
[2] | Wang, Q., Ito, S., Gratzel, M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., Bessho, T., and Imai, H., “Characteristics of High Efficiency Dye-Sensitized Solar Cells,” J. Phys. Chem. B 110, 25210-25221, 2006. |
|
[3] | Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Tavernelli, I., Rothlisberger, U., Nazeeruddin M.K., and Grätzel, M., “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nature Chemistry 6, 242-247, 2014. |
|
[4] | Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., “Solar cell efficiency tables (Version 45),” Progress in photovoltaics: research and applications, 23(1), 1-9, 2015. |
|
[5] | Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L., J. Appl. Phys., Part 2, 45, L638-L640, 2006. |
|
[6] | Gao, F.; Wang, Y., Shi, D., Zhang, J., Wang, M. K., Jing, X. Y., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M., Grätzel, M., J. Am. Chem. Soc. 130, 10720-10728 ,2008. |
|
[7] | Ferber, J., and Luther, J., “Computer simulations of light scattering and absorption in dye-sensitized solar cells.” Solar Energy Materials and Solar Cells 54 (1998). |
|
[8] | Rothenberger, G., Comte, P., Gratzel, M., “A contribution to the optical design of dye_sensitized nanocrystalline solar cells,” Solar Energy Materials & Solar Cells, 58, 321-336, 1999. |
|
[9] | Soedergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S. E., “Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells,” The Journal of Physical Chemistry, 98(21), 5552-5556, 1994. |
|
[10] | Matthews, D., Infelta, P., and Grätzel, M, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes.” Solar Energy Materials and Solar Cells, 44(2), 119-155, 1996. |
|
[11] | Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998. |
|
[12] | Usami, A., “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell,” Chemical Physics Letters, 277(1), 105-108, 1997. |
|
[13] | Usami, A., “Theoretical study of charge transportation in dye-sensitized nanocrystalline TiO2 electrodes,” Chemical physics letters, 292(1), 223-228, 1998. |
|
[14] | Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998. |
|
[15] | Stangl, R., Ferber, J., & Luther, J., “On the modeling of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 54(1), 255-264, 1998. |
|
[16] | Usami, A., & Ozaki, H., “Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells,” The Journal of Physical Chemistry B, 105(20), 4577-4583, 2001. |
|
[17] | Bisquert, J., Cahen, D., Hodes, G., Rühle, S., & Zaban, A., “Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells,” The Journal of Physical Chemistry B, 108(24), 8106-8118, 2004. |
|
[18] | Filipič, M., Berginc, M., Smole, F., & Topič, M., “Analysis of electron recombination in dye-sensitized solar cell,” Current Applied Physics, 12(1), 238-246, 2012. |
|
[19] | Wenger, S., Schmid, M., Rothenberger, G., Gentsch, A., Gratzel, M., and Schumacher, J. O., “Coupled Optical and Electronic Modeling of Dye-Sensitized Solar Cells for Steady-State Parameter Extraction,” J. Phys. Chem. C 115, 10218-10229, 2011. |
|
[20] | Topič, M., Čampa, A., Filipič, M., Berginc, M., Krašovec, U. O., & Smole, F., “Optical and electrical modelling and characterization of dye-sensitized solar cells,” Current Applied Physics, 10(3), S425-S430, 2010. |
|
[21] | Berthier, S., and Lafait, J., “Modelisation des Propriétés Optiques des Milieux Inhomogènes a Structures Complexe,” Journal de Physique Colloque CI, supplément au N°1, Tome 42, 1981. |
|
[22] | Fredin, K., Nissfolk, J., Hagfeldt, A., “Brownian dynamics simulations of electrons and ions in mesoporous films,” Solar Energy Materials & Solar Cells 86, 283-297, 2005. |
|
[23] | Lagemaat, J., Benkstein, K., Frank, A., “Relation between Particle Coordination Number and Porosity in Nanoparticle Films: Implications to Dye-Sensitized Solar Cells,” The Journal of Physical Chemistry B 105, 50, 2001. |
|
[24] | Meng, N., Michael, K.H., Dennis, Y.C., Leung, K., “An analytical study of the porosity effect on dye-sensitized solar cell performance,” Solar Energy Materials & Solar Cells, 90, 1331-1344, 2006. |
|
[25] | Taylor, S. W. “Transport of substrate and biomass in porous media with application to in situ bioremediation of organic contaminants in groundwater,” PhD thesis, Department of Civil Engineering, Princeton, 1990. |
|
[26] | Taylor, N.J., Milly, S.W., and Jaffe, P. R., “Biofilm growth and the related changes in the physical properties of a porous medium, 2, Permeability,” Water Resour. Res., 26(9), 2161-2169, 1990. |
|
[27] | Deb, A. K. “Theory of sand filtration.” J. Sanit. Eng. Div., ASCE, 96(3), 399-422. (1969). |
|
[28] | C.F. Bohren, D.R. Huffman “Absorption and scattering of light by small particles,” Wiley, 1998. |
|
[29] | Maheu, B., Letoulouzan, J.N., and Gouesbet, G., “Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters,” Applied Optics, 23 (19), 1984. |
|
[30] | Rozé, C., Girasole, T., Gréhan, G., Gouesbet, G., Maheu, B., “Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters,” Optics communications 194 251-263, 2001. |
|
[31] | Dioum, A, Ndiaye, S., Gueye, E.H.O., Gaye, M.B., Faye, D.N., Sakho, O., Faye, M., and Beye, A.C., “3-D Modeling of bilayer heterojunction organic solar cell based on Copper Phthalocyanine and Fullerene (CuPc/C60): evidence of total excitons dissociation at the donor-acceptor interface.” Global Journal of Pure and Applied Sciences,19, 2013. |
|
[32] | Benkstein, K.D., Kopidakis, N., van de Lagemaat, J., Frank, A.J., “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” Phys. Chem. B, 107-114, 2003. |
|
[33] | Barbe, C.J., Arendse, F., Comte, P., Jirousck, M., Lenzmann, F., Shklover, V., Gratzel, M., “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,” J. Am. Ceram. Soc, 80, 31-57, 1997. |
|
[34] | Saito, Y., Kambe, S., Kitamura, T., Wada, Y., and Yanagida, S., “Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, 83(1), 1-13, 2004. |
|
[35] | Bisquert, J., and Marcus, R. A., “Device modeling of dye-sensitized solar cells. In: Multiscale Modelling of Organic and Hybrid Photovoltaics,” Springer Berlin Heidelberg, 325-395, 2013. |
|
[36] | Park, N. G., Van de Lagemaat, J., and Frank, A. J., “Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells,” The Journal of Physical Chemistry B, 104(38), 8989-8994, 2000. |
|
[37] | Huang, C. Y., Hsu, Y. C., Chen, J. G., Suryanarayanan, V., Lee, K. M., and Ho, K. C., “The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell,” Solar energy materials and solar cells, 90(15), 2391-2397, 2006. |
|