[1] | Pauling, L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc., 1932, 54, 3570-3582. |
|
[2] | Pearson, R.G. Chemical hardness, in: Sen, K. D. (Ed.), Structure and Bonding, vol. 80, Springer, Berlin, 1993. |
|
[3] | Fukui, K.; Yonesawa, Y.; Shingu, H.A molecular orbital theory of reactivity in aromatic hydrocarbons.J. Chem. Phys., 1952, 20, 722-725. |
|
[4] | Yang, W.; Parr, R.G. Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis, Proc. Natl. Acad. Sci. USA, 1985, 82, 6723-6726. |
|
[5] | Lengauer, T.; Rarey, M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol., 1996, 6, 402-406. |
|
[6] | Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Drug Discovery, 2004, 3, 935-949. |
|
[7] | Pearlman, D. A.; Kollman, P. A. The calculated free energy effects of 5-methyl cytosine on the B to Z transition in DNA, Biopolymers, 1990, 29, 1193-1209. |
|
[8] | Gohlke, H.; Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors, Angew. Chem. Int. Ed. Engl., 2002, 41, 2644-2676. |
|
[9] | Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM-A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem., 1994, 15, 488-506. |
|
[10] | Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol., 1995, 245, 43-53. |
|
[11] | Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261, 470-489. |
|
[12] | Ewing, T. J. A.; Kuntz, I. D. Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem., 1997, 18, 1175-1189. |
|
[13] | Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662. |
|
[14] | Wu, G.; Robertson, D. H.; Brooks, C. L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKERA CHARMm-based MD docking algorithm. J. Comput. Chem., 2003, 24, 1549-1562. |
|
[15] | Bühm, H. J.; Stahl, M. The use of scoring functions in drug discovery applications. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; Wiley-VCH: New York, 2002; Vol. 18, pp 41-87. |
|
[16] | Shao, M.; Wang, S.; Wang, C.; Yuan, X.; Li, S. C.; Zheng, W.; Bu, D. Incorporating Ab Initio energy into threading approaches for protein structure prediction. BMC Bioinformatics. 2011, 12 (Suppl 1), 54-67. |
|
[17] | de Jongel, M. R.; Vinkers, M.; van Lenthe, J. H.; Daeyaert, F.; Bush, I. J.; van Dam, H. J. J.; Sherwood, P.; Guest, M. F. Ab Initio potential grid based docking: From High Performance Computing to In Silico Screening. COMPLIFE, 2007, 940, 168-178. |
|
[18] | V. Vasilyev, V.; Bliznyuk, A. Application of semiempirical quantum chemical methods as a scoring function in docking. Theor. Chem. Acc., 2004, 112, 313-317. |
|
[19] | Bietz, S.; Urbaczek, S.; Schulz, B.; Rarey, M. Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes. J. Cheminf., 2014, 6, 1-12. |
|
[20] | Linderstrøm-Lang. K. On the ionization of proteins. Cr. Trav. Lab. Carlsberg, 1924, 15, 1-29. |
|
[21] | Stewart, R. The proton: appellation to organic chemistry. Academic Press, New York, 1985. |
|
[22] | Carrol, F.A. Perspectives on structure and mechanism in organic chemistry. Brooks-Cole, New York, 1998. |
|
[23] | Zhao, J.; Zhang, R. Proton transfer reaction rate constants between hydronium ion (H3O+) and volatile organic compounds. Atmos. Environ., 2004, 38, 2177-2185. |
|
[24] | Kennedy, R. A.; Mayhew, Ch. A.; Thomas, R.; Watts, P. Reactions of H3O+ with a number of bromine containing fully and partially halogenated hydrocarbons. Int. J. Mass Spectrom., 2003, 223, 627-637. |
|
[25] | Bouchoux, G. Gas-phase basicities of polyfunctional molecules. Part 1: Theory and methods. Mass Spectrom. Rev., 2007, 26, 775-835. |
|
[26] | Deakyne, C.A. Proton affinities and gas-phase basicities: theoretical methods and structural effects.Int. J. Mass. Spectrom., 2003, 227, 601-616. |
|
[27] | Lias, S. G.; Liebman, J. F.; Levine, R. D. Evaluated gas phase basicities and proton affinities of molecules; heats of formation of protonated molecules.J. Phys. Chem. Ref. Data, 1984, 13, 695-808. |
|
[28] | Rajak, S. J.; Ghosha, D. C. Correlating the site selectivity of protonation in some ambidentate molecules in terms of the dual descriptor. Eur. Phys. J. D., 2012, 66: 66, 6 pp. |
|
[29] | Ghosh, D. C. A theoretical study of some selected molecules and their protonation by the application of CNDO method (Premch and Roych and Research Studentship Award, University of Calcutta, 1976). |
|
[30] | Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Struct. Funct. Bioinf., 2002, 47, 409-443. |
|
[31] | Smith, G. R.; Sternberg, M. J. E. Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol., 2002, 12, 28-35. |
|
[32] | Ritchie, D. Recent progress and future directions in protein-protein docking. Curr. Prot. Pept. Sci., 2008, 9, 1-15. |
|
[33] | Chen, R.; Li, L.; Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins: Struct. Funct. Bioinf., 2003, 52, 80-87. |
|
[34] | Macindoe, G.; Mavridis, L.; Venkatraman, V.; Devignes, M.; Ritchie, D. HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res., 2010, 38, W445-W449. |
|
[35] | Kozakov, D.; Brenke, R.; Comeau, S.; Vajda, S. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins: Struct. Funct. Bioinf., 2006, 65, 392-406. |
|
[36] | Tovchigrechko, A.; Vakser, I. A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res., 2006, 34, W310-W314. |
|
[37] | Mandell, J. G.; Roberts, V. A.; Pique, M. E.; Kotlovyi, V.; Mitchell, J. C.; Nelson, E.; Tsigelny, I.; ten Eyck, L. F. Protein docking using continuum electrostatics and geometric fit. Protein Eng., 2001, 14, 105-113. |
|
[38] | Andrusier, N.; Mashiach, E.; Nussinov, R.; Wolfson, H.J. Principles of flexible protein-protein docking. Proteins: Struct. Funct. Bioinf., 2008, 73, 271-289. |
|
[39] | Lyskov, S.; Gray, J. J. The Rosetta Dock server for local protein-protein docking. Nucleic Acids Res., 2008, 36, W233-W238. |
|
[40] | Dominguez, C.; Boelens, R.; Bonvin, A. M. J. J. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc., 2003, 125, 1731-1737. |
|
[41] | Ogmen, U.; Keskin, O.; Aytunas, S.; Nussinov, R.; Gursoy, A. PRISM: protein interactions by structural matching. Nucleic Acids Res., 2005, 134, W331-W336. |
|
[42] | Grosdidier, A.; Zoete, V.; Michielin, O. Swiss Dock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res., 2011, 39, W270-W277. |
|
[43] | Ritchie, D.; Kozakov, D.; Vajda, S. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions. Bioinformatics, 2008, 24, 1865-1873. |
|
[44] | ten Brink, T.; Exner, T. E. Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J. Chem. Inf. Model., 2009, 49, 1535-1546. |
|
[45] | Sippl, M. J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol., 1990, 213, 859-883. |
|
[46] | DeWitte, R.; Shakhnovich, E. SMoG: De novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J. Am. Chem. Soc., 1996, 118, 11733-11744. |
|
[47] | Mitchell, J. B. O.; Laskowski, R. A.; Alexander, A.; Thornton, J. M. BLEEP-Potential of mean force describing protein-lig and interactions: I. Generating potential. J. Comput. Chem., 1999, 20, 1165-1176. |
|
[48] | Muegge, I.; Martin, Y. C. A general and fast scoring function for protein-ligand interactions: A simplified potential approach. J. Med. Chem., 1999, 42, 791-804. |
|
[49] | Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol., 2000, 295, 337-356. |
|
[50] | Stubbs, M. T.; Reyda, S.; Dullweber, F.; Möller, M.; Klebe, G.; Dorsch, D.; Mederski, W.; Wurziger, H. pH-dependent binding modes observed in trypsin crystals: Lessons for structure-based drug design. Chem Bio Chem, 2002, 3, 246-249. |
|
[51] | Mardis, K. L.; Luo, R.; Gilson, M. K. Interpreting trends in the binding of cyclic ureas to HIV-1 protease. J. Mol. Biol., 2001, 309, 507-517. |
|
[52] | Warshel, A.; Sharma, P. K.; Kato, M.; Parson, W. W. Modeling electrostatic effects in proteins. Biochim. Biophys. Acta, 2006, 1764, 1647-1676. |
|
[53] | Brock, K.; Talley, K.; Coley, K.; Kundrotas, P.; Alexov, E. Optimization of electrostatic interactions in protein-protein complexes. Biophys. J., 2007, 83, 3340-3352. |
|
[54] | Tjong, H.; Zhou, H-X. Accurate calculations of binding, folding, and transfer free energies by a scaled generalized born method. J. Chem. Theory Comput., 2008, 4, 1733-1744. |
|
[55] | Bertonati, C.; Honig, B.; Alexov, E. Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Biophys. J., 2007, 92, 1891-1899. |
|
[56] | Schmidt, M.; Lopes, A.; Amara, N.; Bathelt, C.; Simonson, T. Testing the coulomb/accessible surface area solvent model for protein stability, ligand binding, and protein design. BMC Bioinformatics, 2008, 9, 148. |
|
[57] | Schreiber, G.; Haran, G.; Zhou, H-X. Fundamental aspects of protein-protein association kinetics. Chem. Rev., 2009, 109, 839-860. |
|
[58] | Shaul, Y.; Schreiber, G. Exploring the charge space of protein-protein association: a proteomic study. Proteins: Struct. Funct. Bioinf., 2005, 60, 341-352. |
|
[59] | Alsallaq, R.; Zhou, H-X. Electrostatic rate enhancement and transient complex of protein-protein association. Proteins: Struct. Funct. Bioinf., 2008, 71, 320-335. |
|
[60] | Dong, F.; Zhou, H-X. Electrostatic contribution to the binding stability of protein-protein complexes. Proteins: Struct. Funct. Bioinf., 2006, 65, 87-102. |
|
[61] | Czodrowski, P.; Sotriffer, C. A.; Klebe, G. Protonation changes upon ligand binding to trypsin and thrombin. Structural interpretation based on pKa calculations and ITC experiments. J. Mol. Biol., 2007, 367, 1347-1356. |
|
[62] | Djurdjevic-Pahl, A.; Hewage, C.; Malthouse, J. P. G. Ionisations within a subtilisin-glyoxal inhibitor complex. Biochim. Biophys. Acta, 2005, 1749, 33-41. |
|
[63] | Blundell, C. D.; Mahoney, D. J.; Cordell, M. R.; Almond, A.; Kahmann, J. D.; Perczel, A.; Taylor, J. D.; Campbell, I. D.; Day, A. J. Determining the molecular basis for the pH-dependent interaction between the link module of human TSG-6 and hyaluronan. J. Biol. Chem., 2007, 282, 12976-12988. |
|
[64] | Lu, Y.; Yang, C-Y.; Wang, S. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. J. Am. Chem. Soc., 2006, 128, 11830-11839. |
|
[65] | Mason, A. C.; Jensen, J. H. Protein-protein binding is often associated with changes in protonation state. Proteins: Struct. Funct. Bioinf., 2008, 71, 81-91. |
|
[66] | Archontis, G.; Simonson, T. Proton binding to proteins. A free-energy component analysis using a dielectric continuum model. Biophys. J., 2005, 88, 3888-3904. |
|
[67] | Alexov, E. G. Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association. Application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes. Proteins: Struct. Funct. Bioinf., 2004, 56, 572-584. |
|
[68] | Mitra, R.; Shyam, R.; Mitra, I.; Miteva, M.; Alexov, E. Calculating the protonation states of proteins and small molecules. Implications to ligand-receptor interactions. Curr. Comput.-Aided Drug Des., 2008, 4, 169-179. |
|
[69] | Polgar, T.; Keseru, G. M. Virtual screening for β-secretase (BACE1) inhibitors reveals the importance of protonation states at Asp32 and Asp228. J. Med. Chem., 2005; 48, 3749-3755. |
|
[70] | Polgar, T.; Magyar, C.; Simon, I.; Keseru, G. M. Impact of ligand protonation on virtual screening against β-secretase (BACE1). J. Chem. Inf. Mod., 2007, 47, 2366-2373. |
|
[71] | Jensen, J. H. Calculating pH and salt dependence of protein-protein binding. Curr. Pharm. Biotechnol., 2008, 9, 96-102. |
|
[72] | Kukić, P.; Nielsen, J. E. Electrostatics in proteins and protein-ligand complexes. Future Med. Chem., 2010, 2, 647-666. |
|
[73] | Li, H.; Robertson, A. D.; Jensen, J. H. Very fast empirical prediction and rationalization of protein pKa values.Proteins: Struct. Funct. Bioinf., 2005, 61, 704-721. |
|
[74] | Khandogin, J.; Brooks, C. L.Linking folding with aggregation in Alzheimer's β-amyloid peptides.Proc. Natl. Acad. Sci. USA, 2007, 104, 16880-16885. |
|
[75] | Chen, X.; Deng, Y. F. Long-time molecular dynamics simulations of botulinum biotoxin type-A at different pH values and temperatures.J. Mol. Model., 2007, 13, 559-572. |
|
[76] | Khandogin, J.; Raleigh, D. P.; Brooks, C. L. Folding intermediate in the villin headpiece domain arises from disruption of a N-terminal hydrogen-bonded network. J. Am. Chem. Soc., 2007, 129, 3056-3057. |
|
[77] | Srivastava, J.; Barber, D. L.; Jacobson, M. P. Intracellular pH sensors: design principles and functional significance. Physiology, 2007, 22, 30-39. |
|
[78] | Khandogin, J.; Brooks, C. L. Toward the accurate first-principles prediction of ionization equilibria in proteins. Biochemistry, 2006, 45, 9363-9373. |
|
[79] | Dlugosz, M.; Antosiewicz, J. M. Effects of solute−solvent proton exchange on polypeptide chain dynamics: A constant-pH molecular dynamics study.J. Phys. Chem. B., 2005, 109, 13777-13784. |
|
[80] | Mongan, J.; Case, D.A. Biomolecular simulations at constant pH. Curr. Opin. Strucl. Biol., 2005, 15, 157-163. |
|
[81] | Mitra, R. C.; Zhang, Z.; Alexov, E. In silico modeling of pH-optimum of protein-protein binding. Proteins: Struct. Funct. Bioinf., 2011, 79, 925-936. |
|
[82] | Yang, A-S.; Honig, B. On the pH dependence of protein stability. J. Mol. Biol., 1993, 231, 459-474. |
|
[83] | Whitten, S.; Garcia-Moreno, B. pH Dependence of stability of staphyloccocal nuclease: Evidence of substantial electrostatic interactions in the denaturated state. Biochemistry, 2000, 39, 14292-14304. |
|
[84] | Tollinger, M.; Crowhurst, K.; Kay, L.; Forman-Kay, J. Site-specific contributions to the pH dependence of protein stability. Proc. Natl. Acad. Sci. USA, 2003, 100, 4545-4550. |
|
[85] | Bauman, A. T.; Jaron, S.; Yukl, E.T.; Burchfiel, J. R.; Blackburn, N. J. pH Dependence of peptidylglycine monooxygenase. Mechanistic implications of Cu-methionine binding dynamics. Biochemistry, 2006, 45, 11140-11150. |
|
[86] | Bidwai, A. K.; Ok, E. Y.; Erman, J. E. pH Dependence of cyanide binding to the ferric heme domain of the direct oxygen sensor from Escherichia coli and the effect of alkaline denaturation. Biochemistry, 2008, 47, 10458-10470. |
|
[87] | Matthew, J. B.; Gurd, F. R. N.; Garcia-Moreno, B.; Flanagan, M. A.; March, K. L.; Shire, S. J. pH-Dependent processes in proteins. CRC Criti. Rev. Biochem., 1985; 18, 91-197. |
|
[88] | Anderson, D. E.; Becktel, W. J.; Dahlquist, F. W. pH-Induced denaturation of proteins: A single salt bridges contributes 3-5 kcal/mol to the free energy of folding of T4-lysozyme. Biochem., 1990, 29, 2403-2408. |
|
[89] | Pace, C. N.; Laurents, D. V.; Erickson, R. E. Urea denaturation of barnase: pH dependence and characterzation of the unfolded state. Biochemistry, 1992, 31, 2728-2734. |
|
[90] | Khurana, R.; Hate, A.; Nath, U.; Udgaonkar, B. pH dependence of the stability of barstar to chemical and thermal denaturation. Prot. Sci., 1995, 4, 1133-1144. |
|
[91] | Chan, P.; Lovric, J.; Warwicker, J. Subcellular pH and predicted pH-dependent features of proteins. Proteomics, 2006, 6, 3494-3501. |
|
[92] | Chan, P.; Warwicker, J. Evidence for the adaptation of protein pH-dependence to subcellular pH. BMC Biol., 2009, 7, 69, 10 pp. |
|
[93] | Gilson, M. K.; Honig, B. H. Calculation of electrostatic potentials in an enzyme active site. Nature, 1987, 330, 84-86. |
|
[94] | Bashford, D.; Karplus, M. pKa’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry, 1990, 29, 10219-10225. |
|
[95] | Gilson, M. K. Multiple-site titration and molecular modeling: two rapid methods for computing energies and forces for ionizable groups in proteins. Proteins: Struct. Funct. Bioinf., 1993, 15, 266-282. |
|
[96] | Yang, A.; Gunner, M. R.; Sampogna, R.; Sharp, K.; Honig, B. On the calculation of pKa in proteins. Proteins: Struct. Funct. Bioinf., 1993, 15, 252-265. |
|
[97] | Dixon, S. J.; Jurs, P. C. Estimation of pKa for organic oxyacids using calculated atomic charges. J. Comput. Chem. 1993, 14, 1460-1467. |
|
[98] | Antosiewicz, J.; McCammon, J. A.; Gilson, M. K. Prediction of pH-dependent properties of proteins. J. Mol. Biol., 1994, 238, 415-436. |
|
[99] | Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science, 1995, 268, 1144-1149. |
|
[100] | Antosiewicz, J.; Briggs, J. M.; Elcock, A. H.; Gilson, M. K.; McCammon, J. A. Computing ionization states of proteins with a detailed charged model. J. Comput. Chem., 1996, 17, 1633-1644. |
|
[101] | Antosiewicz, J.; McCammon, J. A.; Gilson, M. K. The determinants of pKas in proteins. Biochemistry, 1996, 35, 7819-7833. |
|
[102] | Sham, Y. Y.; Chu, Z. T.; Warshel, A. Consistent calculations of pKa’s of ionizable residues in proteins: Semi-microscopic and microscopic approaches. J. Phys. Chem. B, 1997, 101, 4458-4472. |
|
[103] | Duarte, H. A.; Carvalho, S.; Paniago, E. B.; Simas, A. M. Importance of tautomers in the chemical behavior of tetracyclines. J. Pharm. Sci., 1999, 88, 111-120. |
|
[104] | Briggs, J. M.; Antosiewicz, J. Simulation of pH-dependent properties of proteins using mesoscopic models. Rev. Comput. Chem., 1999, 13, 249-311 and references therein. |
|
[105] | Ullmann, G. M.; Knapp, E. W. Electrostatic models for computing protonation and redox equilibria in proteins. Eur. Biophys. J., 1999, 28, 533-551. |
|
[106] | Crnogorac, M. M.; Ullmann, G. M.; Kostic N. M. Effects of pH on protein association: modification of the proton-linkage model and experimental verification of the modified model in the case of cytochrome c and plastocyanin. J. Am. Chem. Soc., 2001, 123 (44), 10789-10798. |
|
[107] | Nielsen, J. E.; McCammon, J. A. On the evaluation and optimization of protein X-ray structures for pKa calculations. Protein Sci., 2003, 12, 313-326. |
|
[108] | Tannock, I. F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res., 1989, 49, 4373-4384. |
|
[109] | Ojugo, A. S.; McSheehy, P. M.; McIntyre, D. J.; McCoy, C.: Stubbs, M.; Leach, M. O.; Judson, I. R.; Griffiths, J. R. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes. NMR Biomed., 1999, 12, 495-504. |
|
[110] | Said, H. M.; Mohammadkhani, R. Folate transport in intestinal brush border membrane: involvement of essential histidine residue(s). Biochem. J., 1993, 290, 237-240. |
|
[111] | Fei, Y. J; Liu, W.; Prasad, P. D.; Kekuda, R.; Oblak, T. G.; Ganapathy, V.; Leibach, F. H. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Biochemistry, 1997, 36, 452-460. |
|
[112] | Metzner, L.; Natho, K.; Zebisch, K.; Dorn, M.; Bosse-Doenecke, E.; Ganapathy, V.; Brandsch, M. Mutational analysis of histidine residues in the human proton-coupled amino acid transporter PAT1. Biochim. Biophys. Acta, 2008, 1778, 1042-1050. |
|
[113] | Unal, E. S.; Zhao, R.; Chang. M. H.; Fiser, A., Romero, M. F.; Goldman, I. D. The functional roles of the His 247 and His 281 residues in folate and proton translocation mediated by the human proton-coupled folate transporter SLC46A1. J. Biol. Chem., 2009, 284, 17846-17857. |
|
[114] | Bartlett, P. A.; Hanson, J. E.; Giannousis, P. P. Potent Inhibition of Pepsin and Penicillopepsin by Phosphorus-Containing Peptide Analogues. J. Org. Chem., 1990, 55, 6268-6274. |
|
[115] | Alexov, E. Numerical calculations of the pH of maximal protein stability. The effect of the sequence composition and 3D structure. Eur. J. Biochem., 2004, 271, 173-185. |
|
[116] | Miranda, C.; Escartí, F.; Lamarque, L; Yunta, M. J. R.; Navarro, P.; García-España, E.; Jimeno, M.L. New 1H-pyrazole-containing polyamine receptors able to complex L-glutamate in water at physiological pH values. J. Am. Chem. Soc., 2004, 126, 823-833. |
|
[117] | Alexov, E.; Mehler, E. L.; Baker, N.; Baptista, A. M.; Huang, Y.; Milletti, F.; Nielsen, J. E, Farrell, D.; Carstensen, T.; Olsson, M. H.; Shen, J. K.; Warwicker, J.; Williams, S.; Word, J. M. Progress in the prediction of pKa values in proteins. Proteins: Struct. Funct. Bioinf., 2011, 79, 3260-3275. |
|
[118] | Nielsen, J. E.; Gunner, M. R.; Garcia-Moreno, B. E. The pKa cooperative: a collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins. Proteins: Struct. Funct. Bioinf., 2011, 79, 3249-3259. |
|
[119] | Rose, P. W.; Beran, B.; Bi, C.; Bluhm, W. F.; Dimitropoulos, D.; Goodsell, D. S.; Prlic, A.; Quesada, M.; Quinn, G. B.; Westbrook, J. D.; Young, J.; Yukich, B.; Zardecki, C.; Berman, H. M.; Bourne, P. E. The RCSB protein data bank: redesigned web site and web services. Nucleic Acids Res., 2011, 39, D392-401. |
|
[120] | Janin, J.; Bahadur, R. P.; Chakrabarti, P. Protein-protein interaction and quaternary structure. Q. Rev. Biophys., 2008, 41, 133-80. |
|
[121] | Ozbabacan, S. E.; Engin, H. B.; Gursoy, A.; Keskin, O. Transient protein-protein interactions. Protein Eng. Des. Sel., 2011, 24, 635-648. |
|
[122] | Sheinerman, F. B.; Honig, B. On the role of electrostatic interactions in the design of protein-protein interfaces. J. Mol. Biol., 2002, 318, 161-77. |
|
[123] | Lawrence, M. C.; Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol., 1993; 234, 946-50. |
|
[124] | Vakser, I. A.; Aflalo, C. Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins: Struct. Funct. Bioinf., 1994, 20, 320-9. |
|
[125] | McCoy, A. J.; Epa, V. C.; Colman, P. M. Electrostatic complementarity at protein/protein interfaces. J. Mol. Biol., 1997, 268, 570-584. |
|
[126] | Vijayakumar, M.; Wong, K. Y.; Schreiber, G.; Fersht, A. R.; Szabo, A.; Zhou, H-X. Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on barnase and barstar. J. Mol. Biol., 1998, 278, 1015-24. |
|
[127] | Qin, S.; Pang, X.; Zhou, H. X. Automated prediction of protein association rate constants. Structure, 2011, 19, 1744-1751. |
|
[128] | Keskin, O.; Gursoy, A.; Ma, B.; Nussinov, R. Principles of protein-protein interactions: What are the preferred ways for proteins to interact? Chem. Rev., 2008, 108, 1225-1244. |
|
[129] | Prada-Gracia, D.; Gomez-Gardenes, J.; Echenique, P.; Falo, F. Exploring the free energy landscape: from dynamics to networks and back. PLoS Comput. Biol., 2009, 5, e1000415, 9 pp. |
|
[130] | Jackson, R. M.; Sternberg, M. J. A continuum model for protein-protein interactions: application to the docking problem. J. Mol. Biol., 1995, 250, 258-75. |
|
[131] | Frederick, K. K.; Marlow, M. S.; Valentine, K. G.; Wand, A. J. Conformational entropy in molecular recognition by proteins. Nature, 2007; 448, 325-9. |
|
[132] | Caffrey, D. R.; Somaroo, S.; Hughes, J. D.; Mintseris, J.; Huang, E. S. Are protein-protein interfaces more onserved in sequence than the rest of the protein surface? Protein Science, 2004, 13, 190-202. |
|
[133] | Meszaros, B.; Simon, I.; Dosztanyi, Z. The expanding view of protein-protein interactions: complexes involving intrinsically disordered proteins. Phys. Biol., 2011, 8, 035003, 10 pp. |
|
[134] | Collins, K. D. Charge density-dependent strength of hydration and biological structure. Biophys. J., 1997, 72, 65-76. |
|
[135] | Wadsö, I. Isothermal microcalorimetry for the characterization of interactions between drugs and biological materials. Thermochim. Acta, 1995, 267, 45-59. |
|
[136] | Jelesarov, I.; Bosshard, H. R. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of bimolecular recognition. J. Molec. Recog., 1999, 12, 3-18. |
|
[137] | Fukada, H.; Takahashi, K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins: Struct. Funct. Bioinf., 1998, 33, 159-166. |
|
[138] | Raffaa, R. B.; Staglianoa, G. W.; Spencera, S. D. Protonation effect on drug affinity. Eur. J. Pharmacol., 2004, 483, 323-324. |
|
[139] | Raffa, R. B. (Ed.), Drug-Receptor Thermodynamics: Introduction and Applications. John Wiley and Sons, Chichester, 2001, pp. 1-781. |
|
[140] | Lo Conte, L.; Chothia, C.; Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol., 1999, 285, 2177-98. |
|
[141] | Harms, M. J.; Castaneda, C. A.; Schlessman, J. L.; Sue, G. R.; Isom, D. G.; Cannon, B. R.; Garcia-Moreno, E. B. The pKa values of acidic and basic residues buried at the same internal location in a protein are governed by different factors. J. Mol. Biol., 2009, 389, 34-47. |
|
[142] | Gerstein, M.; Lesk, A. M.; Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry, 1994, 33, 6739-49. |
|
[143] | Wilson, I. A.; Stanfield, R. L. Antibody-antigen interactions: New structures and new conformational changes. Curr. Opin. Struct. Biol., 1994, 4, 857-67. |
|
[144] | DuBay, K. H.; Geissler, P. L. Calculation of proteins’ total side-chain torsional entropy and its influence on protein-ligand interactions. J. Mol. Biol., 2009; 391, 484-97. |
|
[145] | Todorov, N. P.; Monthoux, P. H.; Alberts, I. L. The influence of variations of ligand protonation and tautomerism on protein-ligand recognition and binding energy landscape. J. Chem. Inf. Mod., 2006, 46, 1134-1142. |
|
[146] | Knox, A. J. S.; Meegan, M. J.; Carta, G.; Lloyd, D. G. Considerations in compound database preparation: “Hidden” impact on virtual screening results. J. Chem. Inf. Mod., 2005, 45, 1908-1919. |
|
[147] | Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Ann. Rev. Biophys. Biomol. Struct., 2003, 32, 335-373. |
|
[148] | Kundrotas, P. J.; Alexov, E. Electrostatic properties of protein-protein complexes. Biophys. J., 2006, 91, 1724-36. |
|
[149] | Mitra, R. C.; Zhang, Z.; Alexov, E. In silico modeling of pH-optimum of protein-protein binding. Proteins: Struct. Funct. Bioinf., 2011, 79, 925-936. |
|
[150] | Gilson, M. K.; Zhou, H. X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct., 2007, 36, 21-42. |
|
[151] | Witham, S.; Talley, K.; Wang, L.; Zhang, Z.; Sarkar, S.; Gao, D.; Yang, W.; Alexov, E. Developing hybrid approaches to predict pKa values of ionizable groups. Proteins: Struct. Funct. Bioinf., 2011, 79, 3389-3399. |
|
[152] | Jones, G.; Willett, P.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267, 727-748. |
|
[153] | Bayden, A. S.; Fornabaio, M.; Scarsdale, J. N.; Kellogg, G. E. Web application for studying the free energy of binding and protonation states of protein-ligand complexes based on HINT. J .Comput. Aided Mol. Des., 2009, 23, 621-32. |
|
[154] | Rapp, C. S.; Schonbrun, C.; Jacobson, M. P.; Kalyanaraman, C.; Huang, N. Automated site preparation in physics-based rescoring of receptor ligand complexes. Proteins: Struct. Funct. Bioinf., 2009, 77, 52-61. |
|
[155] | Kalliokoski, T.; Salo, H. S.; Lahtela-Kakkonen, M.; Poso, A. The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. J. Chem. Inf. Mod., 2009, 49, 2742-2748. |
|
[156] | Fornabaio, M.; Cozzini, P.; Mozzarelli, A.; Abraham, D. J.; Kellogg, G. E. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes. J. Med. Chem., 2003, 46, 4487-4500. |
|
[157] | Cozzini, P.; Fornabaio, M.; Marabotti, A.; Abraham, D. J.; Kellogg, G. E.; Mozzarelli, A. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit constrained water. J. Med. Chem., 2002; 45, 2469-2483. |
|
[158] | Pospisil, P.; Ballmer, P.; Scapozza, L.; Folkers, G. Tautomerism in computer-aided drug design. J. Recept. Signal Transduct. Res., 2003, 23, 361-371. |
|
[159] | Kirchmair, J.; Markt, P.; Distinto, S.; Wolber, G.;, Langer, T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection--what can we learn from earlier mistakes? J. Comput. Aided Mol. Des., 2008, 22, 213-28. |
|
[160] | Ferrara, P.; Gohlke, H.; Price, D.J.; Klebe, G.; Brooks C. L. III. Assessing scoring functions for protein-ligand interactions J. Med. Chem., 2004, 47, 3032-3047. |
|
[161] | Zou, X.; Sun, Y.; Kuntz, I. D. Inclusion of solvation in ligand binding free energy calculations using the generalized-Born model. J. Am. Chem. Soc., 1999, 121, 8033-8043. |
|
[162] | Kellenberger, E.; Rodrigo, J.; Muller, P.; Rognan, D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins: Struct. Funct. Bioinf., 2004, 57, 225-242. |
|
[163] | Perola, E.; Walters, W. P.; Charifson, P. S. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins: Struct. Funct. Bioinf., 2004, 56, 235-249. |
|
[164] | Krovat, E. M.; Steindl, T.; Langer, T. Recent advances in docking and scoring. Curr. Comput.-Aided Drug Des., 2005, 1, 93-102. |
|
[165] | Taylor, R. D.; Jewsbury, P. J.; Essex, J. W. A review of protein small molecule docking methods. J. Comput.-Aided Mol. Des., 2002, 16, 151-166. |
|
[166] | Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin; Th, E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol., 1982, 161, 269-288. |
|
[167] | DesJarlais, R. L.; Sheridan, R. P.; Seibel, G. L.; Dixon, J. S.; Kuntz, I. D.; Venkataraghavan, R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known threedimensional structure. J. Med. Chem., 1988, 31, 722-729. |
|
[168] | Gschwend, D. A.; Kuntz, I. D. Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal. J. Comput.-Aided Mol. Des., 1996, 10, 123-132. |
|
[169] | Ewing, T. J. A.; Makino, S.; Skillman, A. G.; Kuntz, I. D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput.-Aided Mol. Des., 2001, 15, 411-428. |
|
[170] | Rarey, M.; Wefing, S.; Lengauer, T. Placement of medium-sized molecular fragments into active sites of proteins. J. Comput.-Aided Mol. Des., 1996, 10, 41-54. |
|
[171] | Zavodszky, M. I.; Sanschagrin, P. C.; Korde, R. S.; Kuhn, L. A. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. J. Comput.-Aided Mol. Des., 2002, 16, 883-902. |
|
[172] | Jain, A. N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem., 2003, 46, 499-511. |
|
[173] | Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47, 1739-1749. |
|
[174] | Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47, 1750-1759. |
|
[175] | Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T.A .; Sanschagrin, P. C.; Mainz, D. T. Extra precision Glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49, 6177-6196. |
|
[176] | Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Improved protein-ligand docking using GOLD. Proteins: Struct. Funct. Bioinf., 2003, 52, 609-623. |
|
[177] | Jones, G.; Willett, P.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267, 727-748. |
|
[178] | Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol., 1995, 245, 43-53. |
|
[179] | Goodsell, D. S.; Olson, A. J. Automated docking of substrates to proteins by simulated annealing. Proteins: Struct. Funct. Bioinf., 1990, 8, 195-202. |
|
[180] | Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662. |
|
[181] | Korb, O.; Stützle, T.; Exner, T. E. PLANTS: Application of ant colony optimization to structure-based drug design. In Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS 2006, LNCS 4150; Dorigo, M.; Gambardella, L. M.; Birattari, M.; Martinoli, A.; Poli, R.; Stützle, T., Eds. pp 247-258. |
|
[182] | Korb, O.; Stützle, T.; Exner, T. E. An ant colony optimization approach to flexible protein-ligand docking. Swarm Intell., 2007, 2, 115-134. |
|
[183] | Korb, O.; Stützle, T.; Exner, T. E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49, 84-96. |
|
[184] | Totrov, M.; Abagyan, R. Flexible protein ligand docking by global energy optimization in internal coordinates. Proteins: Struct. Funct. Bioinf., 1997, 1, 215-220. |
|
[185] | McMartin, C.; Bohacek, R. S. QXP: Powerful, rapid computer algorithms for structure-based drug design. J. Comput.-Aided Mol. Des., 1997, 11, 333-344. |
|
[186] | Westhead, D. R.; Clark, D. E.; Murray, C. W. A comparison of heuristic search algorithms for molecular docking. J. Comput.-Aided Mol. Des., 1997, 11, 209-228. |
|
[187] | Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; Eldridge, M. D. Flexible docking using tabu search and an empirical estimate of binding affinity. Proteins: Struct. Funct. Bioinf., 1998, 33, 367-382. |
|
[188] | McGann, M.; Almond, H.; Nicholls, A.; Grant, J. A.; Brown, F. Gaussian docking functions. Biopolymers, 2003, 68, 76-90. |
|
[189] | Kontoyianni, M.; McClellan, L. M.; Sokol, G. S. Evaluation of docking performance: Comparative data on docking algorithms. J. Med. Chem., 2004, 47, 558-565. |
|
[190] | Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M. Ligand Fit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graphics Model., 2003, 21, 289-307. |
|
[191] | Kaul, M.; Pilch, D. S. Thermodynamics of aminoglycoside-rRNA recognition: the binding of neomycin-class aminoglycosides to the A site of 16 S rRNA. Biochemistry, 2002, 41, 7695-7706. |
|
[192] | Kaul, M.; Barbieri, C. M.; Kerrigan, J. E.; Pilch, D. S. Coupling of drug protonation to the specific binding of aminoglycosides to the A site of 16 S rRNA: Elucidation of the number of drug amino groups involved and their identities. J. Mol. Biol., 2003, 326, 1373-1387. |
|
[193] | Schüürmann, G.; Cossi, M.; Barone, V.; Tomasi, J. Prediction of the pKa of carboxilic acids using the ab initio continuum-solvation model PCM-UAHF. J. Phys. Chem. A, 1998, 102, 6706-6712. |
|
[194] | Toth, A. M.; Liptak, M. D.; Phillips, D. L.; Shields, G. C. Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods. J. Chem. Phys., 2001, 114, 4595-4606. |
|
[195] | Topol, I. A.; Tawa, G. J.; Burt, S. K.; Rashin, A. A. Calculation of absolute and relative acidities of substituted imidazoles in aqueous solvent. J. Phys. Chem. A, 1997, 101, 10075-10081. |
|
[196] | da Silva, C. O.; da Silva, E. C.; Nascimento, M. A. C. Ab initio calculations of absolute pKa values in aqueous solution, I. Carboxylic acids. J. Phys. Chem. A, 1999, 103, 11194-11199. |
|
[197] | Topol, I. A.; Tawa, G. J.; Caldwell, R. A.; Eissenstat, M. A.; Burt, S. K. Acidity of organic molecules in the gas phase and in aqueous solvent. J. Phys. Chem. A, 2000, 104, 9619-9624. |
|
[198] | da Silva, C. O.; da Silva, E. C.; Nascimento, M. A. C. Ab initio calculations of absolute pKa values in aqueous solution, II. Aliphatic alcohols, thiols, and halogenated carboxilic acids. J. Phys. Chem. A, 2000, 104, 2402-2409. |
|
[199] | Liptak, M. D.; Shields, G. C. Accurate pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J. Am. Chem. Soc., 2001, 123, 7314-7319. |
|
[200] | Jang, Y. H.; Sowers, L. C.; Cagin, T.; Goddard, W. A., III. First principles calculation of pKa values for 5-substituted uracils. J. Phys. Chem. A, 2001, 105, 274-280. |
|
[201] | La Francois, C. J.; Jang, Y. H.; Cagin, T.; Goddard, W. A., III; Sowers, L. C. Conformation and proton configuration of pyrimidine deoxynucleoside oxidation damage products in water. Chem. Res. Toxicol., 2000, 13, 462-470. |
|
[202] | Tomasi, J.; Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev., 1994, 94, 2027-2094. |
|
[203] | Cramer, C. J.; Truhlar, D. G. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev., 1999, 99, 2161-2200. |
|
[204] | Orozco, M.; Luque, F. J. Theoretical methods for the description of the solvent effect in biomolecular systems. Chem. Rev., 2000, 100, 4187-4225. |
|
[205] | Tomasi, J. Thirty years of continuum solvation chemistry: a review, and prospects for the near future.Theor. Chem. Acc., 2004, 112, 184-203. |
|
[206] | Tomasi, J. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105, 2999-3094. |
|
[207] | Cramer, C. J.; Truhlar, D. G. A universal approach to solvation modeling. Acc. Chem. Res., 2008, 41, 760-768. |
|
[208] | Ho, J.; Coote, M. L. A universal approach for continuum solvent pKa calculations: are we there yet? Theor. Chem. Acc., 2010, 125, 3-21. |
|
[209] | Czodrowski, P. Prediction of protonation states in ligand-protein complexes upon ligand binding Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Pharmazie der Philipps-UniversitÄat Marburg Marburg/Lahn, 2006. |
|
[210] | Ho, J.; Coote, M.L. pKa calculation of some biologically important carbon acids-An assessment of contemporary theoretical procedures. J. Chem. Theory Comput., 2009, 5, 295-306. |
|
[211] | Casasnovas, R.; Frau, J.; Ortega-Castro, J.; Salvà, A.; Donoso, J.; Muñoz, F. Absolute and relative pKa calculations of mono and diprotic pyridines by quantum methods. J .Mol. Struct. Theochem., 2009, 912, 5-12. |
|
[212] | Pliego, J. R. Jr; Riveros, J. M. Theoretical Ccalculation of pKa using the cluster−continuum model. J. Phys. Chem. A, 2002, 106, 7434-7439. |
|
[213] | Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. SM6: A density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute−water clusters. J. Chem. Theory Comput., 2005, 1, 1133-1152. |
|
[214] | Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J. Phys. Chem. A, 2006, 110, 2493-2499. |
|
[215] | Sánchez-Marcos, E.; Terryn, B.; Rivail, J. L. Protonation of nitrogen-containing bases in solution: continuum vs. discrete-continuum models for aqueous solutions. J. Phys. Chem., 1985, 89, 4695-4700. |
|
[216] | Claverie, P.; Daudey, J. P.; Langlet, J.; Pullman, B.; Plazzola, D.; Huron, M. J. Studies of solvent effects. 1. Discrete, continuum, and discrete-continuum models and their comparison for some simple cases: ammonium (1+) ion, methanol, and substituted ammonium (1+) ion. J. Phys. Chem., 1978, 82, 405-418. |
|
[217] | Vyacheslav, S.; Bryantsev, S.; Diallo, M. S.; Goddadrd, W. A. III. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J. Phys. Chem. B, 2008, 112, 9709-9719. |
|
[218] | Pliego, J. R. Jr; Riveros, J. M. The cluster−continuum model for the calculation of the solvation free energy of ionic species. J. Phys. Chem. A, 2001, 105, 7241-7247. |
|
[219] | Scherrer, R. A.; Leo, A.J. Multi-pH QSAR: A method to differentiate the activity of neutral and ionized species and obtain true correlations when both species are involved. Mol. Inf., 2010, 29, 687-693. |
|
[220] | Scherrer, R. A.; Donovan, S. F. Automated potentiometric titrations in KCl/water-saturated octanol: Method for quantifying factors influencing ion-pair partitioning. Anal. Chem., 2009, 81, 2768-2778. |
|
[221] | Caron, G.; Ermondi, G.; Scherrer, R. A. Lipophilicity, polarity, and hydrophobicity, in comprehensive medicinal chemistry II, (Eds: B. Testa, H. van de Waterbeemd), Elsevier, Oxford, 2007, ch. 5.18, pp. 425-452. |
|
[222] | Scherrer, R. A.; Donovan, S. F. Species-specific log D in drug design and ADMET analyses. Presented at the 29th National Medicinal Chemistry Symposium, Madison, WI, June 2004, 70 (a copy is available on request). |
|
[223] | Parajuli, R.; Medhi, C. Basicities of some 9-substituted acridine-4-carboxamides: A density functional theory (DFT) calculation. J. Chem. Sci., 2004, 116, 235-241. |
|
[224] | Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of biochemistry, 2nd ed.; Worth Publishers: New York, 1993. |
|
[225] | Steed, J.; Atwood, J. Supramolecular chemistry; John Wiley and Sons, LTD: Chichester, 2000. |
|
[226] | Schneider, H.-J.; Yatsimirsky, A. Principles and methods in supramolecular chemistry; John Wiley and Sons, LTD: Chichester, 2000. |
|
[227] | Fitzmaurice, R. J.; Kyne, G. M.; Douheret, D.; Kilburn, J. D. Synthetic receptors for carboxylic acids and carboxylates. J. Chem. Soc., Perkin Trans., 2002, 1, 841-864. |
|
[228] | Gale, P. A. Anion coordination and anion-directed assembly: highlights from 1997 and 1998. Coord. Chem. Rev., 2000, 199, 181-233. |
|
[229] | Gale, P. A. Anion receptor chemistry: highlights from 1999. Coord. Chem. Rev., 2001, 213, 79-128. |
|
[230] | Sigel, H.; Martin, R. B. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev., 1982, 82, 385-426. |
|
[231] | Clement, O.; Rapko, B. M.; Hay, B. P. Structural aspects of metal-amide complexes. Coord. Chem. Rev., 1998, 170, 203-243. |
|
[232] | Paz, P. B.; Vega-Hissi, E. G.; Estrada, M. R.; Garro-Martinez, J. C. In silico modeling of the molecular structure and binding of leukotriene A4 into leukotriene A4 hydrolase. Chem. Biol. Drug Des., 2012,80, 902-908. |
|
[233] | Thunnissen, M. M. G. M.; Nordlund ,P.; Haeggstrom, J. Z. Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Biol., 2001, 8, 131-135. |
|
[234] | Haeggstrom J. Z. Leukotriene A4 hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. J. Biol. Chem., 2004, 279, 50639-50642. |
|
[235] | Kirkland, T. A.; Adler, M.; Bauman, J. G.; Chen, M.; Haeggstrom, J. Z.; King. B.; Kochanny. M. J.; Liang, A. M.; Mendoza, L.; Phillips, G. B.; Thunnissen, M; Trinh, L.; Whitlow, M.; Ye, B.; Ye ,H., Parkinson, J.; Guilford, W. J. Synthesis of glutamic acid analogs as potent inhibitors of leukotriene A4 hydrolase. Bioorgan. Med. Chem., 2008, 16, 4963-4983. |
|
[236] | Thunnissen, M. M. G. M.; Andersson, B.; Samuelsson, B.; Wong, C. H.; Haeggstrom, J. Z. Crystal structures of leukotriene A4 hydrolase in complex with captopril and two competitive tightbinding inhibitors. FASEB J., 2002, 16, 1648-1650. |
|
[237] | Gavernet, L.; Palestro, P. H.; Bruno-Blanch, L. Docking applied to the study of inhibitors of c-met kinase. ISRN Phys. Chem., 2012, Article ID 391897, 5 pages. |
|
[238] | Patronov, A.; Dimitrov, I.; Flower , D. R.; Doytchinova, I. Peptide binding to HLA-DP proteins at pH 5.0 and pH 7.0: a quantitative molecular docking study. BMC Struct. Biol., 2012, 12, 20-34. |
|
[239] | Warren, G. L.; Andrews, C. W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, E. C.; Head, M. S. A critical assessment of docking programs and scoring functions. J. Med. Chem., 2006, 49, 5912-5931. |
|
[240] | ten Brink, T.; Exner, T. E. A combined combinatorial and pKa-based approach to ligand protonation states. J. Cheminf., 2010, 2 (Suppl 1), P43. |
|
[241] | Aubard, J.; Schwaller, M. A.; Pantigny, J.; Marsault, J. P.; Levi, G. Surface-enhanced Raman spectroscopy of ellipticine, 2-N-methylellipticinium and their complexes with DNAJ . Raman. Spectrosc., 1992, 23, 373-377. |
|
[242] | Warshel, A. Electrostatic basis of structure-function correlation in proteins. Accounts Chem. Res., 1981, 14, 284-290. |
|
[243] | Demchuk ,E.; Wade, R. C. Improving the continuum dielectric approach to calculating pKas of ionizable groups in proteins. J. Phys. Chem., 1996, 100, 17373-17387. |
|
[244] | Nielsen, J. E.; Vriend, G. Optimizing the hydrogen-bond network in Poisson-Boltzmann equation-based pKa calculations. Proteins: Struct. Funct. Bioinf., 2001, 43, 403-412. |
|
[245] | Karshikoff, A. A simple algorithm for the calculation of multiplesite titration curves. Protein Eng., 1995, 8, 243-248. |
|
[246] | Mehler, E. L.; Guarnieri, F. A self-consistent, microenvironment modulated screened Coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys. J., 1999, 77, 3-22. |
|
[247] | Wisz, M. S.; Hellinga, H. W. An empirical model for electrostatic interactions in proteins incorporating multiple geometry-dependent dielectric constants. Proteins: Struct. Funct. Bioinf., 2003, 51, 360-377. |
|
[248] | Havranek, J. J.; Harbury, P. B. Tanford-Kirkwood electrostatics for protein modeling. Proc. Natl. Acad. Sci. USA, 1999, 96, 11145-11150. |
|
[249] | Nielsen, J. Calculating pKa values in enzyme active sites. Protein Sci., 2003, 12, 1894-1901. |
|
[250] | Barth, P.; Alber, T.; Harbury, P. B. Accurate, conformation-dependent predictions of solvent effects on protein ionization constants. Proc. Natl. Acad. Sci. USA, 2007, 104, 4898-4903. |
|
[251] | Godoy-Ruiz, R., Perez-Jimenez, R.; Garcia-Mira, M. M.; del Pino, I. M. P.; Sanchez-Ruiz, J. M. Empirical parametrization of pK values for carboxylic acids in proteins using a genetic algorithm. Biophys. Chem., 2005, 115, 263-266. |
|
[252] | He, Y.; Xu, J.; Pan, X. M. A statistical approach to the prediction of pKa values in proteins. Proteins: Struct. Funct. Bioinf., 2007, 69, 75-82. |
|
[253] | Simonson, T.; Carlsson, J.; Case, D. A. Proton binding to proteins: pKa calculations with explicit and implicit solvent models. J. Am. Chem. Soc., 2004, 126, 4167-4180. |
|
[254] | Tynan-Connolly, B. M.; Nielsen, J. E. Redesigning protein pKa values. Protein Sci., 2007, 16, 239-249. |
|
[255] | Del Buono, G. S.; Figueirido, F. E.; Levy, R. M. Intrinsic pKas of ionizable residues in proteins: an explicit solvent calculation for lysozyme. Proteins: Struct. Funct. Genet., 1994, 20, 85-97. |
|
[256] | Warshel, A.; Sussman, F.; King, G. Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process. Biochemistry, 1986, 25, 8368-8372. |
|
[257] | http://www.opensource.org/licenses/BSD-2-Clause (accesed 2014/9/3). |
|
[258] | http://propka.ki.ku.dk/. (accesed 2014/9/3). |
|
[259] | Warr, W. Tautomerism in chemical information management systems. J. Comput.-Aided Mol. Des., 2010, 24, 497-520. |
|
[260] | Brenk, R.; lrwin, J. J.; Shoichet, B. K. Here be dragons: docking and screening in an uncharted region of chemical space. J. Biomol. Screen, 2005, 10, 667-674. |
|
[261] | Kellogg, G. E.; Fornabaio, M.; Spyrakis, F.; Lodola, A.; Cozzini, P.; Mozzarelli, A.; Abraham, D. J. Getting it right: modeling of pH, solvent and “nearly” everything else in virtual screening of biological targets. J. Mol. Graph. Mod., 2004, 22, 479-486. |
|
[262] | Bountis T. (Ed.), Proton transfer in hydrogen-bonded systems, NATO ASI Series B: Physics, vol. 291, Plenum Press, New York, 1992, pp. 1-355. |
|
[263] | Kollman, P. A. Free energy calculations: applications to chemical and biochemical phenomena, Chem. Rev., 1993, 93, 2395-2417. |
|
[264] | Reddy, M. R.; Erion, M. D.; Agarwal, A. Free energy calculations: use and limitations in predicting binding affinities, Rev. Comput. Chem., 2000, 16, 217-304. |
|
[265] | Straatsma, T. P. Free energy by molecular simulation, Rev. Comput. Chem., 1996, 9, 81-127. |
|
[266] | Ota, N.; Stroupe, C.; Ferreira da Silva, J. M.; Shah, S. A.; Mares-Guia, M.; Brunger, A. T. Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: Relative free energy of binding of trypsin to benzamidine and benxylamine, Proteins: Struct. Funct. Genet., 1999, 37, 641-653. |
|
[267] | Åqvist, J.; Luzhkov, V. B.; Brandsal, B. O. Ligand binding affinities from MD simulations, Acc. Chem. Res., 2002, 35, 358-365. |
|
[268] | Jorgensen, W. L. Free energy calculations: a breakthrough for modeling organic chemistry in solution, Acc. Chem. Res., 1989, 22, 184-189. |
|
[269] | Grant, J.A.; Pickup, B.T.; Nicholls, A. A smooth permittivity function for Poisson-Boltzmann solvation methods, J. Comput. Chem., 2001, 22, 608-640. |
|
[270] | Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham III, T.E. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33, 889-897. |
|
[271] | Fogolari, F.; Brigo, A.; Molinari, H. Protocol for MM/PBSA molecular dynamics simulations of proteins, Biophys. J., 2003, 85, 159-166. |
|
[272] | Gohlke, H.; Kiel, C.; Case, D.A. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RaIGDS complexes, J. Mol. Biol., 2003, 330, 891-913. |
|
[273] | Böhm, H.-J.; Stahl, M. Rapid empirical scoring functions in virtual screening applications, Med. Chem. Res., 1999, 9, 445-462. |
|