[1] | Mettin R., et al., 1997. Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys. Rev. 56, 3, 2924-2931. |
|
[2] | Mettin R., Koch Ph., & Lauterborn W., 2006. Modeling acoustic cavitation with bubble redistribution 6-th International Symposium on Cavitation, Wageningen. |
|
[3] | Shestakov S., 2001. The basic technology of cavitation disintegration. Mоskow: EVA-Press (in Russian). |
|
[4] | Shestakov S., 2009. Management of hydration the food biopolymers. In V. Panfilov (Eds.). Theoretical Foundations of Food Technology. Moskow: ColosS, (in Russian). |
|
[5] | Margulis M., 1997. Patent RU 2096934. |
|
[6] | Dezhkunov N., et al., 2000. Enhancement of sonoluminescence emission from a multibabble cavitation zone. Ultrasonics Sonochemistry, V 7, 1, 19-24. |
|
[7] | Margulis M., 2000. Sonoluminescence. Physics-Uspekhi, 170, 263-287 (in Russian). |
|
[8] | Matula T., et al., 1995. Comparison of Multibubble and Single-Bubble Sonoluminescence Spectra. Phys. Rev. Lett., 75, 2602-2605. |
|
[9] | Flannigan D., Suslik K., 2005. Plasma formation and temperature measurement during single-bubble cavitation. Letters to Nature, 434, 52-55. |
|
[10] | Shestakov S., 2008. Research of an opportunity to strengthen the nonparametric multibubble cavitation. Applied Physics, 6, 18-24 (in Russian). |
|
[11] | Flynn H., 1982. Patent US 4333796. |
|
[12] | Putterman S. et al., 1994. Patent US 5659173. |
|
[13] | Taleyarkhan R. et al., 2002. Evidence for Nuclear Emissions During Acoustic Cavitation. Science, V. 295, 1868-1873. |
|
[14] | Taleyarkhan R. et al., 2004. Additional evidence of nuclear emissions during acoustic cavitation. Physical Review, V. 69, 036109. |
|
[15] | Nigmatulin R., 2005. Nano-scale thermonuclear fusion in imploding vapor bubbles. Nuclear Engineering and Design, V. 235, 1079-1091. |
|
[16] | Lahey R., Taleyarkhan R., & Nigmatulin R., 2007. Sonofusion technology revisted. Nuclear Engineering and Design, V. 237, 1571-1585. |
|
[17] | Khavroshkin O., Bystrov V., 2007. Sonoluminescence and Sono-fusion. Applied Physics, 5, 7-14 (in Russian). |
|
[18] | Shestakov S., 2007. Patent EP 1810744. |
|
[19] | Dezhkunov N., Ignatenko P., & Kotukhov A., 2007. Optimization of the activity of cavitation generated by pulsed ultrasound. Electronic Journal “Technical Acoustics”. http://www.ejta.org, 2007, 16 (in Russian). |
|
[20] | Lanin V., Dezhkunov N. & Tomal V., 2008. Instrumentation for measurement of ultrasonic effects in processes. Technology and design of electronic equipment, 2, 51-55 (in Russian). |
|
[21] | Krefting D., Mettin R. & Lauterborn W., 2004. High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrasonics Sonochemistry, 11, 119-123. |
|
[22] | Shestakov S., & Krasulya O., 2010. Sonochemical technologies in food industry. Electronic Journal “Technical Acoustics”, http://www.ejta.org, 2010, 10 (in Russian). |
|
[23] | Rogov I., & Shestakov S., 2004. Epithermal change the thermodynamic equilibrium of water and aqueous solutions: Delusion and Reality. Storage and Processing of Farm Products, 4, 17-20; 10, 9-13 (in Russian). |
|
[24] | Ashokkumar M., Rink R., & Shestakov S., 2011. Hydrodynamic cavitation – an alternative to ultrasonic food processing. Electronic Journal “Technical Acoustics”. http://www.ejta.org, 2011, 9. |
|
[25] | Jinesh K. & Frenken J., 2008. Experimental Evidence for Ice Formation at Room Temperature. Physical Review Letters, 101, 036101. |
|
[26] | Mawson R., & Knoerzer K., 2007. A brief history of the application of ultrasonics in food processing. 19-th ICA Congress, Madrid. |
|
[27] | Knapp R., Daily J., & Hammitt F., 1970. Cavitation. NY: McGraw Book Company. |
|
[28] | Rozenberg L. (Eds.), 1968. Physics and technology of high-intensity ultrasound. Moskow: Nauka, (in Russian). |
|
[29] | Podobriy G. M. et al., 1969. Theoretical foundations of torpedo weapons. Moscow: Military (in Russian). |
|
[30] | Klotz A., & Hynynen K., 2010. Simulations of the Devin and Zudin modified Rayleigh-Plesset equations to model bubble dynamics in a tube. Electronic Journal “Technical Acoustics”, http://www.ejta.org, 2010, 11. |
|
[31] | Melnikov P., Makarenko V. & Makarenko M., 2004. Achievement of high temperatures during compression vapor bubble. J. of Appl. Mechanics and Tech. Physics, V 45, 4, 13-25 (in Russian). |
|
[32] | Gaitan D., Tessien R., & Hiller R., 2007. Pressure pulses from transient cavitation in high-q resonators. 19-th ICA Congress, Madrid. |
|
[33] | Mettin R., Koch Ph. & Lauterborn W., 2006. Modeling acoustic cavitation with bubble redistribution 6-th International Symposium on Cavitation, Wageningen. |
|
[34] | Shestakov S., & Befus A., 2008. The formulation of the criterion of similarity sonochemical reactors processing environments that do not ensure acoustic resonance. Dep. VINITI, 840-B2008 (in Russian). |
|
[35] | Lavrinenko O., Savina E. & Leonov G., 2007. Modeling mechanical-physical and chemical effects in the collapse of cavitation bubbles. Polzunov Bulletin, 3, 59-63 (in Russian). |
|
[36] | Kedrinskiy V., 1975. Dynamics of the cavitation zone at underwater explosion near free surface. J. of Appl. Mechanics and Tech. Physics, 5, 68-78 (in Russian). |
|
[37] | Rink R. & Shestakov S., 2012. Cavitational reactor with symmetric nonmonolithic oscillatory system of the acoustic cell for processes of food sonochemistry. Electronic Journal “Technical Acoustics”, http://www.ejta.org, 2012, 2. |
|
[38] | Mettin R., et al., 1997. Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys. Rev. 56, 3, 2924-2931. |
|
[39] | Patent application WO 2007111524, 2007. |
|