[1] | Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. |
|
[2] | Lam, W. S., Lam, W. H., & Jaaman, S. H. (2021). Portfolio optimization with a mean-absolute deviation-entropy multi-objective model. Entropy, 23(10), 1266. |
|
[3] | Liu, Y., Zhou, M., & Zhang, W. (2020). Mean-semivaiance portfolio optimization model with background risk. Systems Engineering-Theory and Practice, 40(9), 2282-2291. |
|
[4] | Zhang, P., Shu, Y. F. (2016). Mean-absolute deviation fuzzy portfolio optimization with entropy constraint. Statistics and Decision, 14, 68-70. |
|
[5] | Zhu, B., Jin, C. J., Han, S., & Dai, Q. (2006). Multi-objective venture portfolio decision model based on fuzzy programming. Journal of Technology Economics, (2), 88-91. |
|
[6] | Li, T., Zhang, W., & Xu, W. (2013). Fuzzy possibilistic portfolio selection model with VaR constraint and risk-free investment. Economic modelling, 31, 12-17. |
|
[7] | Wang, B., Li, Y., Wang, S., & Watada, J. (2018). A multi-objective portfolio selection model with fuzzy value-at-risk ratio. IEEE transactions on fuzzy systems, 26(6), 3673-3687. |
|
[8] | Zhang, H., Watada, J., & Wang, B. (2019). Sensitivity-based fuzzy multi-objective portfolio model with Value-at-Risk. IEEJ transactions on electrical and electronic engineering, 14(11), 1639-1651. |
|
[9] | Wang, J., He, F., Wu, Z., & Chen, L. (2018). Interval Quadratic Programming Model for Portfolio Selection with Improved Interval Acceptability Degree. Chinese Journal of Management Science, 26(9), 11-18. |
|
[10] | Sun, J., Xiong, Y., Zhang, H., & Liu, Z. (2020). Interval multi-objective programming methods for solving multi-period portfolio selection problems]. Control and Decision, 35(3), 645-650. |
|
[11] | Sui, Y., Hu, J., & Ma, F. (2020). A mean-variance portfolio selection model with interval-valued possibility measures. Mathematical Problems in Engineering, 2020, 1-12. |
|
[12] | Moghadam, M. A., Ebrahimi, S. B., & Rahmani, D. (2020). A constrained multi-period robust portfolio model with behavioral factors and an interval semi-absolute deviation. Journal of computational and applied mathematics, 374, 112742. |
|
[13] | Kumar, P., Behera, J., & Bhurjee, A. K. (2022). Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis. OPSEARCH, 59(1), 41-77. |
|
[14] | Chen, S., & Chen, S. (2008). Fuzzy risk analysis based on measures of similarity between interval-valued fuzzy numbers. Computers & Mathematics with Applications, 55(8), 1670-1685. |
|
[15] | Yin, D. (2018). Application of interval valued fuzzy linear programming for stock portfolio optimization. Applied Mathematics, 09(02), 101-113. |
|
[16] | Khalifa, H., & Al-Shabi, M. (2018). On solving stock portfolio problem through interval-valued fuzzy linear programming. Asian Journal of Science and Technology, 09(10), 8961-8969. |
|
[17] | Wu, Q., Liu, X., Qin, J., & Zhou, L. (2021). Multi-criteria group decision-making for portfolio allocation with consensus reaching process under interval type-2 fuzzy environment. Information Sciences, 570, 668-688. |
|
[18] | Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems, 122(2), 315-326. |
|
[19] | Vercher, E., Bermúdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769-782. |
|