[1] | Bader, Q., Kadum, E., “Mean stress correction effects on the fatigue life behavior of steel alloys by using stress life approach theories,” International Journal of Engineering & Technology IJET-IJENS, 14(04), 50-58, Aug. 2014. |
|
[2] | Kosteas, D., “Fatigue behavior and analysis,” Talat lecture 2401, EAA – European Aluminium Association, 1994. |
|
[3] | Senthil, K.M., Vijayaragan, S., “Analytical and experimental studies on fatigue life prediction of steel and composite multi-leaf spring for light passenger vehicles using life data analysis,” Materials Science (Medžiagotyra), 13(2), 141-146, May 2007. |
|
[4] | Bhanage, A., Padmanabhan, K., “Design for fatigue and simulation of glass fiber/epoxy composite automobile leaf spring,” ARPN Journal of Engineering and Applied Sciences, 9(3), 196-203, Mar. 2014. |
|
[5] | Sonsino, C.M., Fricke, W., de Bruyne, F., Hoppe, A., Ahmadi, A., Zhang, G., “Notch stress concepts for the fatigue assessment of welded joints – Background and applications,” International Journal of Fatigue, 34, 2-16, May 2010. |
|
[6] | Park, W., Miki, C., “Fatigue assessment of large-size welded joints based on the effective notch stress approach,” International Journal of Fatigue, 30, 1556-1568, Dec. 2007. |
|
[7] | Shen, W., Yan, R., Barltrop, N., Liu, E., Song, L., “a method of determining structural stress for fatigue strength evaluation of welded joints based on notch stress strength theory,” International Journal of Fatigue, 90, 87-98, Apr. 2016. |
|
[8] | N’Diaye, A., Hariri, S., Pluvinage, G., Azari, Z., “Stress concentration factor analysis for welded, notched tubular T-joints under combined axial, bending and dynamic loading,” International Journal of Fatigue, 31, 367-374, Aug. 2008. |
|
[9] | Radaj, D., Sonsino, C.M., Fricke, W., “Recent developments in local concepts of fatigue assessment of welded joints,” International Journal of Fatigue, 31, 2-11, Jun. 2008. |
|
[10] | Thévenet, D., Ghanameh, M.F., Zeghoul, A., “Fatigue strength assessment of tubular welded joints by an alternative structural stress approach,” International Journal of Fatigue, 51, 74-82, Feb. 2013. |
|
[11] | Fricke, W., Paetzold, H., “Full-scale fatigue tests of ship structures to validate the S-N curve approaches for fatigue strength assessment,” Marine Structures, 23, 115-130, Jan. 2010. |
|
[12] | Fricke, W., von Lilienfeld-Toal, A., Paetzold, H., “Fatigue strength investigations of welded details of stiffened plate structures in steel ships,” International Journal of Fatigue, 34, 17-26, Feb. 2011. |
|
[13] | Aygül, M., Al-Emrani, M., Urushadze, S., “Modeling and fatigue life assessment of orthotropic bridge deck details using FEM,” International Journal of Fatigue, 40, 129-142, Dec. 2011. |
|
[14] | Agrawal, M.S., “Finite element analysis of truck chassis frame,” International Research Journal of Engineering and Technology (IRJET), 2(3), 1949-1956, Jun. 2015. |
|
[15] | Rahman, R.A., Tamin, M.N., Kurdi, O., “Stress analysis of heavy duty truck chassis as a preliminary data for its fatigue life prediction using FEM,” Jurnal Mekanikal, 26, 76-58, Dec. 2008. |
|
[16] | Ullman, D.G., The mechanical design process - Second edition, The McGraw-Hill Companies Inc., Oregon, 314-324. |
|
[17] | Ansys version 16.2 Material database |
|
[18] | IRS ISO 3853: Jan. 1997, Road vehicle coupling device to tow caravans or light trailers- Mechanical strength test. |
|
[19] | Maurya, A.K., Bokare, P.A., “Study of deceleration behavior of different vehicle types,” International Journal for Traffic and Transport Engineering, 2(3), 253-270, Jul. 2012. |
|
[20] | Camara, M., Bonanno, A., Sapia, P., “Revisiting work-energy theorem’s implications,” European Journal of Physics, 28, 1181-1187, Oct. 2007. |
|