[1] | M. Yaman, and S. Sen, 2004, The analysis of the orientation effect of the non-linear flexible systems on performance of the pendulum absorber. Inter J Non-linear Mech. 39, 741-752. |
|
[2] | M. Yaman, and S. Sen, 2007, Vibration control of a cantilever beam of varying orientation. Inter J Solids Struct. 44, 1210-1220. |
|
[3] | U. H. Hegazy, 2009. Single-mode response and control of a hinged-hinged flexible beam. Arch Appl Mech, 79, 335-345. |
|
[4] | A. F. El-Bassiouny, 2005. Single-mode control and chaos of cantilever beam under primary and principal parametric excitations. Chaos, Sol. Fract., 30(5), 1098-1121. |
|
[5] | M. Eissa, N. A. Saeed, and W. A. El-Ganini, 2013. Saturation-based active controller for vibration suppression of a four-degree-of-freedom rotor AMB system, Nonlinear Dyn., 76(1), 743-764. |
|
[6] | W. A. El-Ganini, N. A. Saeed, and M. Eissa, 2013. Positive position feedback (PPF) controller for suppression on nonlinear system vibration. Nonlinear Dyn., 72, 517-537. |
|
[7] | N. A. Saeed, W. A. El-Ganini, and M. Eissa, 2013. Nonlinear time delay saturation-based controller for suppression of nonlinear beam vibrations. App. Math. Model, 37, 8846–8864. |
|
[8] | M. Eissa and Y. A. Amer, 2004. Vibration control of a cantilever beam subject to both external and parametric excitation. Appl. Math. Comput. 152, 611-619. |
|
[9] | Y-Z. Zhao, and J. Xu, 2007. Effects of delayed feedback control on nonlinear vibration absorber system. J. Sound Vib., 308, 212-230. |
|
[10] | U. H. Hegazy, 2009, Dynamics and control of a self-sustained electromechanical seismograph with time-varying stiffness. Mecanica, 44, 355-368 |
|
[11] | M. Yaman, 2009, Direct and parametric excitation of a nonlinear cantilever beam of varying orientation with time-delay feedback. J. Sound Vib., 324, 892-902. |
|
[12] | M. Siewe Siewe and U. H. Hegazy, 2011, Homoclinic bifurcation and chaos control in MEMS resonators. 35, 5533-5552. |
|
[13] | A. A. Nanha Djanan, B. R. Nana Nbendjo and P. Woafo, 2011, Control of vibration on a hinged-hinged beam under a non-ideal excitation using RLC circuit with variable capacitance. Nonlinear Dyn. 63(3), 447-489. |
|
[14] | L-G. Wang, X. Zhang, D. Xu and W. Huang, 2012, Study of differential control method for solving chaotic solutions of nonlinear dynamic system. Nonlinear Dyn. 67(4), 2821-2833. |
|
[15] | M. Moghaddas, E. Esmailzadeh, R. Sedaghati and P. Khosravi, 2012, Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper. J. Vib. Control. 18(6), 757-773. |
|
[16] | I. Kucuk and I. sadek, 2013, Optimal time-delayed boundary control of beams using wavelets. J. Vib. Control. 19(14), 2083-2091. |
|
[17] | K. A. Alhazza and M. A. Majeed, 2012, Free vibrations control of a cantilever beam using combined time delay feedback. J. Vib. Control. 18(5), 609-621. |
|
[18] | Q. C. Nguyen and K-S. Hong, 2012, Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking. J. sound Vib. 331(13), 3006-3019. |
|
[19] | C. Shin, C. Hong and W. B. Jeong, 2012, Active vibration control of bram structures using acceleration feedback control with piezoceramic actuators. J. sound Vib. 331(6), 1257-1269. |
|
[20] | Z. N. Ahmadabadi and S. E. Khadem, 2012, Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Machine Theory. 50, 134-149. |
|