American Journal of Mechanical Engineering
ISSN (Print): 2328-4102 ISSN (Online): 2328-4110 Website: https://www.sciepub.com/journal/ajme Editor-in-chief: Kambiz Ebrahimi, Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Mechanical Engineering. 2013, 1(8), 470-486
DOI: 10.12691/ajme-1-8-1
Open AccessArticle

Experimental Study and CFD Simulation of Two-Phase Flow around Multi-Shape Obstacles in Enlarging Channel

Laith Jaafer Habeeb1, and Riyadh S. Al-Turaihi2

1Mechanical Engineering Department, University of Technology, Baghdad, Iraq

2College of Engineering/ Department of Mech. Eng., Babylon University, Babil, Iraq

Pub. Date: December 24, 2013

Cite this paper:
Laith Jaafer Habeeb and Riyadh S. Al-Turaihi. Experimental Study and CFD Simulation of Two-Phase Flow around Multi-Shape Obstacles in Enlarging Channel. American Journal of Mechanical Engineering. 2013; 1(8):470-486. doi: 10.12691/ajme-1-8-1

Abstract

Experimental and numerical studies are investigated to study the two-phase flow phenomena around multi- shape obstacles in a rectangular enlarging channel which has the dimensions (10 × 3 × 70 cm) enlarged from assembly circular tube of the two phases. Experiments are carried out in the channel with air-water flow with different air and water flow rates. These experiments are aimed to visualize the two phase flow phenomena as well as to study the effect of pressure difference through the channel with the existence of the obstacle. All sets of the experimental data in this study are obtained by using a pressure transducer and visualized by a video camera for different water discharges (20, 25, 35 and 45 l/min) and different air discharges (10, 20, 30 and 40 l/min). While the numerical simulation is conducted by using commercial Fluent CFD software to investigate the steady and unsteady turbulent two dimensional flows for different air and water velocities. The results showed that when air or water discharge increases, high turbulence is appear which generate more bubbles and waves and the mean pressure difference increases. Also, in a water slug, bubbles move slower than the liquid.

Keywords:
steady and unsteady flow smooth enlargement two-phase turbulent flow multi- shape obstacles in channel experimental and Fluent CFD software investigation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 18

References:

[1]  Igor A. Bolotnov, Kenneth E. Jansen, Donald A. Drew, Assad A. Oberai, Richard T. Lahey Jr. and Michael Z. Podowski, “Detached Direct Numerical Simulations of Turbulent Two-Phase Bubbly Channel Flow”, International Journal of Multiphase Flow, 37, (2011), 647-659.
 
[2]  Brennen and Christopher Earls, “Fundamentals of Multiphase Flow”, Cambridge University Press, 2005.
 
[3]  Eckhard Krepper, Matthias Beyer, Thomas Frank, Dirk Lucas and Horst-Michael Prasser, “CFD Modelling of Polydispersed Bubbly Two-Phase Flow Around an Obstacle”, Nuclear Engineering and Design 239 (2009) 2372-2381.
 
[4]  Thomas HÖHNE, “Experiments and Numerical Simulations of Horizontal Two Phase Flow Regimes”, Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, December 2009.
 
[5]  I. EAMES, J. C. R. HUNT and S. E. BELCHER, “Inviscid Mean flow through and Around Groups of Bodies”, J. Fluid Mech., vol. 515, pp. 371-89, Cambridge University Press, 2004.
 
[6]  Seyoung Lee, Changjin Lee, and Soohyung Park, “Unsteady Cavitation and Cryogenic Flow Cavitation around 2D Body”, IEEE computer society, Fifth International Conference on Computational Science and Applications, 49. pp. 306-312, 2007.
 
[7]  T Degawa and T Uchiyama, “Numerical Simulation of Bubbly Flow Around Two Tandem Square-Section Cylinders by Vortex Method”, J. Mechanical Engineering Science, Proc. IMechE Vol. 222 Part C, 2008, pp. 225-234.
 
[8]  Xiangbin Li, Guoyu Wang, Mindi Zhang and Wei Shyy, “Structures of Supercavitating Multiphase Flows”, International Journal of Thermal Sciences 47 (2008), pp. 1263-1275.
 
[9]  Eckhard Krepper, Matthias Beyer, Thomas Frank, Dirk Lucas and Horst-Michael Prasser, “CFD Modelling of Polydispersed Bubbly Two-Phase Flow Around an Obstacle”, Nuclear Engineering and Design 239 (2009) 2372-2381.
 
[10]  Hameed Balassim Mahood, Hala A. Kadim and Ali N. Salim, “Effect of Flow-Obstruction Geometry on Pressure Drops in Horizontal Air-Water Two-Phase Flow”, Al-Qadisiya Journal For Engineering Sciences, Vol. 2, No. 3, 2009, pp. 641-653.
 
[11]  Peng Peng, Jianhua Zhang and Jinsong Zhang, “Simulations for a Novel Fluid Dispensing Technology Based on Gas-liquid Slug Flow”, International Conference on Electronic Packaging Technology & High Density Packaging, IEEE 2011.
 
[12]  Hao Zhou, Guiyuan Mo, Kefa Cen, “Numerical Investigation of Dispersed Gas–Solid Two-Phase flow Around a Circular Cylinder Using Lattice Boltzmann Method”, Computers & Fluids, vol. 52, pp. 130-138, 2011.
 
[13]  Emrah Deniz and Nurdil Eskin, “Numerical Analysis of Adiabatic Two-Phase Flow through Enlarging Channel”, Istanbul Technical University, Mechanical Engineering Faculty, Istanbul, Turkiye, 2011.
 
[14]  Thomas Abadie, Joëlle Aubin, Dominique Legendre, Catherine Xuereb, “Hydrodynamics of Gas–Liquid Taylor Flow in Rectangular Microchannels”, Springer-Verlag, Microfluid Nanofluid (2012) 12:355-369.
 
[15]  V. Talimi, Y. S. Muzychka, S. Kocabiyik, “A Review on Numerical Studies of Slug flow Hydrodynamics and Heat Transfer in Microtubes and Microchannels”, International Journal of Multiphase Flow, vol. 39, pp. 88-104, 2012.
 
[16]  Introductory FLUENT Notes, FLUENT v6.3, Fluent User Services Center, December 2006.
 
[17]  ANSYS 13.0 Help, FLUENT Theory Guide, Mixture Multiphase Model.
 
[18]  Esam M. Abed and Riyadh S. Al-Turaihi, “Experimental Study of Two-Phase Flow around Hydrofoil in Open Channel”, Journal for Mechanical and Materials Engineering, Iraq, 2012, accepted and submitted for publication.
 
[19]  Riyadh S. Al-Turaihi, “Experimental Investigation of Two-Phase Flow (Gas –Liquid) Around a Straight Hydrofoil in Rectangular Channel”, Journal of Babylon University, Iraq, 2012, accepted and submitted for publication.