American Journal of Medical and Biological Research
ISSN (Print): 2328-4080 ISSN (Online): 2328-4099 Website: https://www.sciepub.com/journal/ajmbr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Medical and Biological Research. 2013, 1(3), 64-76
DOI: 10.12691/ajmbr-1-3-3
Open AccessReview Article

The Role of Inflammasomes in Intestinal Inflammation

Nicole Ranson1 and Rajaraman Eri1,

1School of Human Life Sciences, University of Tasmania, Launceston, Australia

Pub. Date: June 25, 2013

Cite this paper:
Nicole Ranson and Rajaraman Eri. The Role of Inflammasomes in Intestinal Inflammation. American Journal of Medical and Biological Research. 2013; 1(3):64-76. doi: 10.12691/ajmbr-1-3-3

Abstract

Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis cause severe gastrointestinal dysfunction and reduce the quality of life. Despite intensive research, the exact pathogenesis of IBD remains elusive. Mucosal immune responses are central to intestinal homeostasis. Immune responses in the gut are orchestrated through innate and adaptive immune responses. In this paper, we will focus on innate immune responses mounted through Toll-like receptors (TLR) and NOD-like receptors (NLR). Recently, inflammasome protein complexes working through Iinterleukin-1β and 18 have been shown to play a pivotal role in the maintenance of gut homeostasis. Recent research work indicates NLRs such as NLRP1, 3, 6 and 12 provide functional roles in inflammasome activation in intestinal physiology. This review highlights the role of inflammasomes in intestinal health and dysfunction.

Keywords:
inflammatory bowel disease colitis inflammasomes innate immunity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Anand, Malireddi, & Kanneganti. "Role of the nlrp3 inflammasome in microbial infection". Front Microbiol, 2, 12. 2011.
 
[2]  Andersson, Olaison, Tysk, & Ekbom. "Appendectomy and protection against ulcerative colitis". N Engl J Med, 344(11), 808-814. 2001.
 
[3]  Becker, & O'Neill. "Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs". Semin Immunopathol, 29(3), 239-248. 2007.
 
[4]  Bergsbaken, Fink, & Cookson. "Pyroptosis: host cell death and inflammation". Nat Rev Microbiol, 7(2), 99-109. 2009.
 
[5]  Bernstein. "Why and where to look in the environment with regard to the etiology of inflammatory bowel disease". Dig Dis, 30 Suppl 3, 28-32. 2012.
 
[6]  Bertrand, Doiron, Labbe, Korneluk, Barker, & Saleh. "Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2". Immunity, 30(6), 789-801. 2009.
 
[7]  Bickston S.J, & Bloomfeld R.S. (2010). Handbook of Inflammatory Bowel Disease (First Edition ed.): Lippincott Williams and Wilkins, a Wolters Kluwer business.
 
[8]  Biswas, Petnicki-Ocwieja, & Kobayashi. "Nod2: a key regulator linking microbiota to intestinal mucosal immunity". J Mol Med (Berl), 90(1), 15-24. 2012.
 
[9]  Bryan, Dorfleutner, Kramer, Yun, Rojanasakul, & Stehlik. "Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes". J Inflamm (Lond), 7, 23. 2010.
 
[10]  Bryan, Dorfleutner, Rojanasakul, & Stehlik. "Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain". J Immunol, 182(5), 3173-3182. 2009.
 
[11]  Cario. "Toll-like receptors in inflammatory bowel diseases: a decade later". Inflamm Bowel Dis, 16(9), 1583-1597. 2010.
 
[12]  Cario, Gerken, & Podolsky. "Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function". Gastroenterology, 132(4), 1359-1374. 2007.
 
[13]  Chen, Liu, Wang, Bertin, & Nunez. "A functional role for Nlrp6 in intestinal inflammation and tumorigenesis". J Immunol, 186(12), 7187-7194. 2011.
 
[14]  Chen, & Nunez. "Sterile inflammation: sensing and reacting to damage". Nat Rev Immunol, 10(12), 826-837. 2010.
 
[15]  Chen, & Nunez. "Inflammasomes in intestinal inflammation and cancer". Gastroenterology, 141(6), 1986-1999. 2011.
 
[16]  Chen, Wang, Chen, & Meng. "Regulation of adaptive immunity by the NLRP3 inflammasome". Int Immunopharmacol, 11(5), 549-554. 2011.
 
[17]  Cho. "The genetics and immunopathogenesis of inflammatory bowel disease". Nat Rev Immunol, 8(6), 458-466. 2008.
 
[18]  Choi, Im, Chung, Pothoulakis, & Rhee. "TRIF mediates Toll-like receptor 5-induced signaling in intestinal epithelial cells". J Biol Chem, 285(48), 37570-37578. 2010.
 
[19]  Chong, Blackshaw, Boyle, Williams, & Walker-Smith. "Histological diagnosis of chronic inflammatory bowel disease in childhood". Gut, 26(1), 55-59. 1985.
 
[20]  Christophi, Rong, Holtzapple, Massa, & Landas. "Immune markers and differential signaling networks in ulcerative colitis and Crohn's disease". Inflamm Bowel Dis, 18(12), 2342-2356. 2012.
 
[21]  Coll, & O’Neill. "New Insights into the Regulation of Signalling by Toll-Like Receptors and Nod-Like Receptors". Journal of Innate Immunity, 2(5), 406-421. 2010.
 
[22]  Correa, Milutinovic, & Reed. "Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases". Biosci Rep, 32(6), 597-608. 2012.
 
[23]  Cosnes, Beaugerie, Carbonnel, & Gendre. "Smoking cessation and the course of Crohn's disease: an intervention study". Gastroenterology, 120(5), 1093-1099. 2001.
 
[24]  Crohns and Colitis Association Australia. (2007), from www.crohnsandcolitis.com.au
 
[25]  D'Osualdo, Weichenberger, Wagner, Godzik, Wooley, & Reed. "CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain". PLoS One, 6(11), e27396. 2011.
 
[26]  Davis, Wen, & Ting. "The inflammasome NLRs in immunity, inflammation, and associated diseases". Annu Rev Immunol, 29, 707-735. 2011.
 
[27]  de Alba. "Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC)". J Biol Chem, 284(47), 32932-32941. 2009.
 
[28]  Dharmani, Srivastava, Kissoon-Singh, & Chadee. "Role of intestinal mucins in innate host defense mechanisms against pathogens". J Innate Immun, 1(2), 123-135. 2009.
 
[29]  Dinarello. "Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process". Am J Clin Nutr, 83(2), 447S-455S. 2006.
 
[30]  Dinarello. "Immunological and inflammatory functions of the interleukin-1 family". Annu Rev Immunol, 27, 519-550. 2009.
 
[31]  Duewell, Kono, Rayner, Sirois, Vladimer, Bauernfeind, Latz. "NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals". Nature, 464(7293), 1357-1361. 2010.
 
[32]  Dupaul-Chicoine, Yeretssian, Doiron, Bergstrom, McIntire, LeBlanc, Saleh. "Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases". Immunity, 32(3), 367-378. 2010.
 
[33]  Elinav, Henao-Mejia, & Flavell. "Integrative inflammasome activity in the regulation of intestinal mucosal immune responses". Mucosal Immunol. 2012.
 
[34]  Elinav, Henao-Mejia, & Flavell. "Integrative inflammasome activity in the regulation of intestinal mucosal immune responses". Mucosal Immunol, 6(1), 4-13. 2013.
 
[35]  Elinav, Strowig, Henao-Mejia, & Flavell. "Regulation of the antimicrobial response by NLR proteins". Immunity, 34(5), 665-679. 2011.
 
[36]  Elinav, Strowig, Kau, Henao-Mejia, Thaiss, Booth, . . . Flavell. "NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis". Cell, 145(5), 745-757. 2011.
 
[37]  Ey, Eyking, Gerken, Podolsky, & Cario. "TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury". J Biol Chem, 284(33), 22332-22343. 2009.
 
[38]  Faustin, Lartigue, Bruey, Luciano, Sergienko, Bailly-Maitre, Reed. "Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation". Mol Cell, 25(5), 713-724. 2007.
 
[39]  Fernandes-Alnemri, Yu, Datta, Wu, & Alnemri. "AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA". Nature, 458(7237), 509-513. 2009.
 
[40]  Finger, Lich, Dare, Cook, Brown, Duraiswami, Gough. "Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity". J Biol Chem, 287(30), 25030-25037. 2012.
 
[41]  Franchi, Amer, Body-Malapel, Kanneganti, Ozoren, Jagirdar, Nunez. "Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages". Nat Immunol, 7(6), 576-582. 2006.
 
[42]  Franchi, Munoz-Planillo, & Nunez. "Sensing and reacting to microbes through the inflammasomes". Nat Immunol, 13(4), 325-332. 2012.
 
[43]  Fukata, & Abreu. "What are toll-like receptors and what role may they have in IBD?". Inflamm Bowel Dis, 14 Suppl 2, S90-92. 2008.
 
[44]  Fukata, Michelsen, Eri, Thomas, Hu, Lukasek, Abreu. "Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis". Am J Physiol Gastrointest Liver Physiol, 288(5), G1055-1065. 2005.
 
[45]  Geddes, Rubino, Streutker, Cho, Magalhaes, Le Bourhis, Philpott. "Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model". Infect Immun, 78(12), 5107-5115. 2010.
 
[46]  Gombault, Baron, & Couillin. "ATP release and purinergic signaling in NLRP3 inflammasome activation". Front Immunol, 3, 414. 2012.
 
[47]  Grenier, Wang, Manji, Huang, Al-Garawi, Kelly, Bertin. "Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1". FEBS Lett, 530(1-3), 73-78. 2002.
 
[48]  Guarda, & So. "Regulation of inflammasome activity". Immunology, 130(3), 329-336. 2010.
 
[49]  Halle, Hornung, Petzold, Stewart, Monks, Reinheckel, Golenbock. "The NALP3 inflammasome is involved in the innate immune response to amyloid-beta". Nat Immunol, 9(8), 857-865. 2008.
 
[50]  Harder, Franchi, Munoz-Planillo, Park, Reimer, & Nunez. "Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor". J Immunol, 183(9), 5823-5829. 2009.
 
[51]  Hise, Tomalka, Ganesan, Patel, Hall, Brown, & Fitzgerald. "An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans". Cell Host Microbe, 5(5), 487-497. 2009.
 
[52]  Hornung, Ablasser, Charrel-Dennis, Bauernfeind, Horvath, Caffrey, Fitzgerald. "AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC". Nature, 458(7237), 514-518. 2009.
 
[53]  Hornung, Bauernfeind, Halle, Samstad, Kono, Rock, Latz. "Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization". Nat Immunol, 9(8), 847-856. 2008.
 
[54]  Hsu, Ali, McGillivray, Tseng, Mariathasan, Humke, Karin. "A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide". Proc Natl Acad Sci U S A, 105(22), 7803-7808. 2008.
 
[55]  Ippagunta, Malireddi, Shaw, Neale, Walle, Green, Kanneganti. "The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization". Nat Immunol, 12(10), 1010-1016. 2011.
 
[56]  Janowitz, Croen, & Sachar. "The role of the fecal stream in Crohn's disease: an historical and analytic review". Inflamm Bowel Dis, 4(1), 29-39. 1998.
 
[57]  Jin, & Flavell. "Molecular mechanism of NLRP3 inflammasome activation". J Clin Immunol, 30(5), 628-631. 2010.
 
[58]  Johnson, Cosnes, & Mansfield. "Review article: smoking cessation as primary therapy to modify the course of Crohn's disease". Aliment Pharmacol Ther, 21(8), 921-931. 2005.
 
[59]  Joo, & Odze. "Rectal sparing and skip lesions in ulcerative colitis: a comparative study of endoscopic and histologic findings in patients who underwent proctocolectomy". Am J Surg Pathol, 34(5), 689-696. 2010.
 
[60]  Kanneganti. "Central roles of NLRs and inflammasomes in viral infection". Nat Rev Immunol, 10(10), 688-698. 2010.
 
[61]  Kawai, & Akira. "Toll-like receptors and their crosstalk with other innate receptors in infection and immunity". Immunity, 34(5), 637-650. 2011.
 
[62]  Kayama, & Takeda. "Regulation of intestinal homeostasis by innate and adaptive immunity". Int Immunol, 24(11), 673-680. 2012.
 
[63]  Kempster, Belteki, Forhead, Fowden, Catalano, Lam, Smith. "Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine". Am J Physiol Gastrointest Liver Physiol, 300(2), G253-263. 2011.
 
[64]  Kerur, Veettil, Sharma-Walia, Bottero, Sadagopan, Otageri, & Chandran. "IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection". Cell Host Microbe, 9(5), 363-375. 2011.
 
[65]  Kim, Bauernfeind, Ablasser, Hartmann, Fitzgerald, Latz, & Hornung. "Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome". Eur J Immunol, 40(6), 1545-1551. 2010.
 
[66]  Kummer, Broekhuizen, Everett, Agostini, Kuijk, Martinon, Tschopp. "Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response". J Histochem Cytochem, 55(5), 443-452. 2007.
 
[67]  Kuppala, Syed, Bandaru, Varre, Akka, & Mundulru. "Immunotherapeutic approach for better management of cancer - role of IL-18". Asian Pac J Cancer Prev, 13(11), 5353-5361. 2012.
 
[68]  Lakatos, Vegh, Lovasz, David, Pandur, Erdelyi, Lakatos. "Is Current Smoking Still an Important Environmental Factor in Inflammatory Bowel Diseases? Results from a Population-based Incident Cohort". Inflamm Bowel Dis. 2013.
 
[69]  Lamkanfi, & Dixit. "Inflammasomes: guardians of cytosolic sanctity". Immunol Rev, 227(1), 95-105. 2009.
 
[70]  Lamkanfi, & Kanneganti. "Nlrp3: an immune sensor of cellular stress and infection". Int J Biochem Cell Biol, 42(6), 792-795. 2010.
 
[71]  Lamkanfi, Walle, & Kanneganti. "Deregulated inflammasome signaling in disease". Immunol Rev, 243(1), 163-173. 2011.
 
[72]  LeBlanc, Yeretssian, Rutherford, Doiron, Nadiri, Zhu, Saleh. "Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity". Cell Host Microbe, 3(3), 146-157. 2008.
 
[73]  Lee, Tattoli, Wojtal, Vavricka, Philpott, & Girardin. "pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling". J Biol Chem, 284(35), 23818-23829. 2009.
 
[74]  Leemans, Cassel, & Sutterwala. "Sensing damage by the NLRP3 inflammasome". Immunol Rev, 243(1), 152-162. 2011.
 
[75]  Lees, & Satsangi. "Genetics of inflammatory bowel disease: implications for disease pathogenesis and natural history". Expert Review of Gastroenterology & Hepatology, 3(5), 513-534. 2009.
 
[76]  Levin, & Shibolet. "Toll-like receptors in inflammatory bowel disease-stepping into uncharted territory". World J Gastroenterol, 14(33), 5149-5153. 2008.
 
[77]  Loftus. "Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences". Gastroenterology, 126(6), 1504-1517. 2004.
 
[78]  Lunney, & Leong. "Review article: Ulcerative colitis, smoking and nicotine therapy". Aliment Pharmacol Ther, 36(11-12), 997-1008. 2012.
 
[79]  Malaty, Fan, Opekun, Thibodeaux, & Ferry. "Rising incidence of inflammatory bowel disease among children: a 12-year study". J Pediatr Gastroenterol Nutr, 50(1), 27-31. 2010.
 
[80]  Mariathasan, Weiss, Newton, McBride, O'Rourke, Roose-Girma, Dixit. "Cryopyrin activates the inflammasome in response to toxins and ATP". Nature, 440(7081), 228-232. 2006.
 
[81]  Marques, & Boneca. "Expression and functional importance of innate immune receptors by intestinal epithelial cells". Cell Mol Life Sci, 68(22), 3661-3673. 2011.
 
[82]  Martinon, Mayor, & Tschopp. "The inflammasomes: guardians of the body". Annu Rev Immunol, 27, 229-265. 2009.
 
[83]  Martinon, Petrilli, Mayor, Tardivel, & Tschopp. "Gout-associated uric acid crystals activate the NALP3 inflammasome". Nature, 440(7081), 237-241. 2006.
 
[84]  Martinon, & Tschopp. "Inflammatory caspases and inflammasomes: master switches of inflammation". Cell Death Differ, 14(1), 10-22. 2007.
 
[85]  Mayor, Martinon, De Smedt, Petrilli, & Tschopp. "A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses". Nat Immunol, 8(5), 497-503. 2007.
 
[86]  Meixenberger, Pache, Eitel, Schmeck, Hippenstiel, Slevogt, Opitz. "Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3". J Immunol, 184(2), 922-930. 2010.
 
[87]  Miao, Alpuche-Aranda, Dors, Clark, Bader, Miller, & Aderem. "Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf". Nat Immunol, 7(6), 569-575. 2006.
 
[88]  Miao, Leaf, Treuting, Mao, Dors, Sarkar, Aderem. "Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria". Nat Immunol, 11(12), 1136-1142. 2010.
 
[89]  Miao, Mao, Yudkovsky, Bonneau, Lorang, Warren, Aderem. "Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome". Proc Natl Acad Sci U S A, 107(7), 3076-3080. 2010.
 
[90]  Molodecky, Soon, Rabi, Ghali, Ferris, Chernoff, Kaplan. "Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases With Time, Based on Systematic Review". Gastroenterology, 142(1), 46-54.e42. 2012.
 
[91]  Monteleone, Trapasso, Parrello, Biancone, Stella, Iuliano, Pallone. "Bioactive IL-18 expression is up-regulated in Crohn's disease". J Immunol, 163(1), 143-147. 1999.
 
[92]  Murphy. "How mitochondria produce reactive oxygen species". Biochem J, 417(1), 1-13. 2009.
 
[93]  Naser, Arce, Khaja, Fernandez, Naser, Elwasila, & Thanigachalam. "Role of ATG16L, NOD2 and IL23R in Crohn's disease pathogenesis". World J Gastroenterol, 18(5), 412-424. 2012.
 
[94]  Ogura, Lala, Xin, Smith, Dowds, Chen, Nunez. "Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis". Gut, 52(11), 1591-1597. 2003.
 
[95]  Park, Ng, Maeda, Rest, & Karin. "Anthrolysin O and other gram-positive cytolysins are toll-like receptor 4 agonists". J Exp Med, 200(12), 1647-1655. 2004.
 
[96]  Parkes, & Jewell. "Ulcerative colitis and Crohns disease: molecular genetics and clinical implications". Expert Rev Mol Med, 2001, 1-18. 2001.
 
[97]  Pedra, Cassel, & Sutterwala. "Sensing pathogens and danger signals by the inflammasome". Curr Opin Immunol, 21(1), 10-16. 2009.
 
[98]  Pelegrin, & Surprenant. "Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway". J Biol Chem, 282(4), 2386-2394. 2007.
 
[99]  Petnicki-Ocwieja, Hrncir, Liu, Biswas, Hudcovic, Tlaskalova-Hogenova, & Kobayashi. "Nod2 is required for the regulation of commensal microbiota in the intestine". Proc Natl Acad Sci U S A, 106(37), 15813-15818. 2009.
 
[100]  Petrilli, Papin, Dostert, Mayor, Martinon, & Tschopp. "Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration". Cell Death Differ, 14(9), 1583-1589. 2007.
 
[101]  Prideaux, Kamm, De Cruz, Chan, & Ng. "Inflammatory bowel disease in Asia: a systematic review". J Gastroenterol Hepatol, 27(8), 1266-1280. 2012.
 
[102]  Pullan, Thomas, Rhodes, Newcombe, Williams, Allen, & Rhodes. "Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis". Gut, 35(3), 353-359. 1994.
 
[103]  Qu, Misaghi, Izrael-Tomasevic, Newton, Gilmour, Lamkanfi, Dixit. "Phosphorylation of NLRC4 is critical for inflammasome activation". Nature, 490(7421), 539-542. 2012.
 
[104]  Radford-Smith. "What is the importance of appendectomy in the natural history of IBD?". Inflamm Bowel Dis, 14 Suppl 2, S72-74. 2008.
 
[105]  Radford-Smith, Edwards, Purdie, Pandeya, Watson, Martin, Florin. "Protective role of appendicectomy on onset and severity of ulcerative colitis and Crohn's disease". Gut, 51(6), 808-813. 2002.
 
[106]  Rathinam, Vanaja, & Fitzgerald. "Regulation of inflammasome signaling". Nat Immunol, 13(4), 333-332. 2012.
 
[107]  Rider, Carmi, Guttman, Braiman, Cohen, Voronov, Apte. "IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation". J Immunol, 187(9), 4835-4843. 2011.
 
[108]  Riteau, Baron, Villeret, Guillou, Savigny, Ryffel, Couillin. "ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation". Cell Death Dis, 3, e403. 2012.
 
[109]  Rosenfeld, & Bressler. "The truth about cigarette smoking and the risk of inflammatory bowel disease". Am J Gastroenterol, 107(9), 1407-1408. 2012.
 
[110]  Sabbah, Chang, Harnack, Frohlich, Tominaga, Dube, Bose. "Activation of innate immune antiviral responses by Nod2". Nat Immunol, 10(10), 1073-1080. 2009.
 
[111]  Sahoo, Ceballos-Olvera, del Barrio, & Re. "Role of the inflammasome, IL-1beta, and IL-18 in bacterial infections". ScientificWorldJournal, 11, 2037-2050. 2011.
 
[112]  Sawczenko, & Sandhu. "Presenting features of inflammatory bowel disease in Great Britain and Ireland". Arch Dis Child, 88(11), 995-1000. 2003.
 
[113]  Schroder, Muruve, & Tschopp. "Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome". Curr Biol, 19(6), R262-265. 2009.
 
[114]  Schroder, & Tschopp. "The inflammasomes". Cell, 140(6), 821-832. 2010.
 
[115]  Sena, & Chandel. "Physiological roles of mitochondrial reactive oxygen species". Mol Cell, 48(2), 158-167. 2012.
 
[116]  Shaw, McDermott, & Kanneganti. "Inflammasomes and autoimmunity". Trends Mol Med, 17(2), 57-64. 2011.
 
[117]  Siegmund. "Interleukin-18 in intestinal inflammation: friend and foe?". Immunity, 32(3), 300-302. 2010.
 
[118]  Smith, Mcdonald, Blumberg, & editors. (2013). Principles of Mucosal Immunology: Garland Science,Taylor and Francis Group, LLC.
 
[119]  Strober, & Fuss. "Proinflammatory Cytokines in the Pathogenesis of Inflammatory Bowel Diseases". Gastroenterology, 140(6), 1756-1767.e1751. 2011.
 
[120]  Strober, Murray, Kitani, & Watanabe. "Signalling pathways and molecular interactions of NOD1 and NOD2". Nat Rev Immunol, 6(1), 9-20. 2006.
 
[121]  Stronati, Negroni, Merola, Pannone, Borrelli, Cirulli, Cucchiara. "Mucosal NOD2 expression and NF-kappaB activation in pediatric Crohn's disease". Inflamm Bowel Dis, 14(3), 295-302. 2008.
 
[122]  Stuyt, Netea, Geijtenbeek, Kullberg, Dinarello, & van der Meer. "Selective regulation of intercellular adhesion molecule-1 expression by interleukin-18 and interleukin-12 on human monocytes". Immunology, 110(3), 329-334. 2003.
 
[123]  Sugawara, Uehara, Nochi, Yamaguchi, Ueda, Sugiyama, Takada. "Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells". J Immunol, 167(11), 6568-6575. 2001.
 
[124]  Szebeni, Veres, Dezsofi, Rusai, Vannay, Mraz, Arato. "Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease". Clin Exp Immunol, 151(1), 34-41. 2008.
 
[125]  Takagawa, Tamura, Takeda, Tomita, Ohda, Fukunaga, Matsumoto. "Association between IL-18 gene promoter polymorphisms and inflammatory bowel disease in a Japanese population". Inflamm Bowel Dis, 11(12), 1038-1043. 2005.
 
[126]  Tal, Sasai, Lee, Yordy, Shadel, & Iwasaki. "Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling". Proc Natl Acad Sci U S A, 106(8), 2770-2775. 2009.
 
[127]  Tamura, Fukuda, Sashio, Takeda, Bamba, Kosaka, Shimoyama. "IL18 polymorphism is associated with an increased risk of Crohn's disease". J Gastroenterol, 37 Suppl 14, 111-116. 2002.
 
[128]  Thia, Loftus, Sandborn, & Yang. "An update on the epidemiology of inflammatory bowel disease in Asia". Am J Gastroenterol, 103(12), 3167-3182. 2008.
 
[129]  Tomalka, Ganesan, Azodi, Patel, Majmudar, Hall, Hise. "A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans". PLoS Pathog, 7(12), e1002379. 2011.
 
[130]  Tschopp, Martinon, & Burns. "NALPs: a novel protein family involved in inflammation". Nat Rev Mol Cell Biol, 4(2), 95-104. 2003.
 
[131]  Vabulas, Wagner, & Schild. "Heat shock proteins as ligands of toll-like receptors". Curr Top Microbiol Immunol, 270, 169-184. 2002.
 
[132]  van de Veerdonk, Netea, Dinarello, & Joosten. "Inflammasome activation and IL-1beta and IL-18 processing during infection". Trends Immunol, 32(3), 110-116. 2011.
 
[133]  van Lookeren Campagne, & Dixit. "Immunology: In command of commensals". Nature, 474(7349), 42-43. 2011.
 
[134]  Villani, Lemire, Fortin, Louis, Silverberg, Collette, Franchimont. "Common variants in the NLRP3 region contribute to Crohn's disease susceptibility". Nat Genet, 41(1), 71-76. 2009.
 
[135]  Wilson, Hair, Knight, Catto-Smith, Bell, Kamm, Connell. "High incidence of inflammatory bowel disease in Australia: a prospective population-based Australian incidence study". Inflamm Bowel Dis, 16(9), 1550-1556. 2010.
 
[136]  Winslet, Allan, Poxon, Youngs, & Keighley. "Faecal diversion for Crohn's colitis: a model to study the role of the faecal stream in the inflammatory process". Gut, 35(2), 236-242. 1994.
 
[137]  Wittmann, Macdonald, & Renne. "IL-18 and skin inflammation". Autoimmun Rev, 9(1), 45-48. 2009.
 
[138]  Wu, Fernandes-Alnemri, & Alnemri. "Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes". J Clin Immunol, 30(5), 693-702. 2010.
 
[139]  Yazdi, Guarda, D'Ombrain, & Drexler. "Inflammatory caspases in innate immunity and inflammation". J Innate Immun, 2(3), 228-237. 2010.
 
[140]  Zhao, Yang, Shi, Gong, Lu, Xu, Shao. "The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus". Nature, 477(7366), 596-600. 2011.
 
[141]  Zhou, Yazdi, Menu, & Tschopp. "A role for mitochondria in NLRP3 inflammasome activation". Nature, 469(7329), 221-225. 2011.