[1] | Rojavin, M.A. and Ziskin, M.C., “Medical applications of millimeter waves,” QJ Med, 91, 57-66, 1998. |
|
[2] | Pakhomov, A.G. and Murphy, M., “Low intensity millimeter waves as a novel therapeutic modality,” IEEE Trans Plasma Sci, 28, 34-40, 2000. |
|
[3] | Pletnev, S.D., “The use of millimeter band electromagnetic waves in clinical oncology,” Crit Rev Biomed Eng, 28, 573-87, 2000. |
|
[4] | Gapeyev, A.B. and Chemeris, N.K., “Model approach to the analyses of effects of modulated electromagnetic radiation on animal cells,” Biophysics, 45, 299-312, 2000. |
|
[5] | Tadevosyan, H.H., Kalantaryan, V.P. and Trchounian, A.H., “Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antiobiotics,” Cell Biochemestry & Biophysics, 51(2-3), 97-103, Jul.2008. |
|
[6] | Kalantaryan, V.P., Vardevanyan, P.O., Babayan, Y.S., Gevorgyan, E.S., Hakobyan, S.N. and Antonyan, A.P., “Influence of low intensity coherent electromagnetic millimeter radiation (EMR) on aqua solution of DNA”, Progress In Electromagnetics Research Letters, 13, 1-9, 2010. |
|
[7] | Babayan, Y.S., Tadevosyan, A.A. and Kalantaryan, V.P., “Influence of millimeter range coherent electromagnetic radiation on some properties of solutions of DNA”, Biomedical Radioelectronics, No2, 52-57, Febr.2009. |
|
[8] | Shenberg, A.S., Uzbekov, M.G., Shihov, S.N., Bazyan, A.S., and Chernyakov, G.M., “Some neyrotrop effects of low intensity electromagnetic waves on the rats with different typological pecularities of the highest neural activity”, Journal of the Highest Neural Activity, 50, 867-77, 2000. |
|
[9] | Minasyan, S.M., Grigoryan, G.Y., Saakyan, S.G., Akhumyan, A.A., and Kalantaryan, V.P., “Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the Hypothalamus in rats”, Neuroscience and Behavioral Physiology, 37(2), 175-80, 2007. |
|
[10] | Sitko SP, Mkrtchyan LN. Introduction to Quantum Medicine. Kiyev: Pattern;1994. |
|
[11] | Logani, M.K., Szabo, I., Makar, V.R., Bhanushali, A., Alekseev, S.I., and Ziskin, M.C., „Effect of Millimeter wave irradiation on tumor metastasis”, Bioelectromagnetics, 27, 258-64, 2007. |
|
[12] | Kalantaryan, V.P., Babayan, Y.S., and Tadevosyan, A.A., “Investigation of the binding of antitumor compouds of Mitoxantrone and Amentantrone with the DNA-irradiated millimeter electromagnetic waves”, in UICC World Cancer Congress, Geneva; p.82 POS- A288..2008a. |
|
[13] | Kalantaryan, V.P., Babayan, Y.S., and Gharibyan, J.V., “Cross influence of Doxorubicin antitumour drug and millimeter electromagnetic waves on structure of tumour DNA”, in UICC World Cancer Congress, Geneva; PUB-306. 2008b. |
|
[14] | Barbault, A., Costa, F., Bottger, B., Munden, R., Bomholt, F., Kuster, N., et al. “Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach”, J Exp Clin Cancer Res, 28(1), 51-60, Apr.2009. |
|
[15] | Costa, F.P., de Oliveira, A.C., Meirelles, R., Machado, M.C., Zanesco, T., Surjan, R., et al. “Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields”, Br J Cancer, 105(5), 640-48, Aug. 2011. |
|
[16] | Zimmerman JW, Pennison MJ, Brezovich I, Yi N, Yang CT, Ramaker R, et al. “Cancer cell proliferation is inhibited by specific modulation frequencies”, Br J Cancer, 106(2), 307-13, Jan. 2012. |
|
[17] | Kuzmenko, A.P., Solovyev, E. and Bundyuk, L.S., “Features of course of tumoral process at influence low power microwave radiations on acupuncture points in experiment”, Experimental oncology, 14(1), 72-6, 1992. |
|
[18] | Chidichimo, G., Beneduci, A., Nicoleta, M., Critelli, M., De Rose, R., Tkatchenco, Y., et al. “Selective inhibition of tumor cells growth by low power millimeter waves”, Anticancer Research 22, 1681-8, 2002. |
|
[19] | Burnham, C.M., “Components of Listeria and Escherichia coli have been used to prime the immune system in a novel approach to fighting cancer”, Drug Discover Today, 2(8), 54-8, 1992. |
|
[20] | Partha, M.D. and Rakesh, S., “DNA methylation and cancer”, J.Clinical Oncology, 22(22), 4632-42, 2004. |
|
[21] | Chernov, V.A., Methods of experimental chemotherapy. Moscow: Medicine press; 1971. |
|
[22] | Makar, V.R., Logani, M.K., Bhanushali, A., Alekseev, S.I., and Ziskin, M.C., “Effect of Cyclophosphamide and 61.22GHz Millimeter Waves on T-Cell, B-Cell, and Macrophage Functions”, Bioelectromagnetics, 27, 458-66, 2006. |
|
[23] | Gapeyev, A.B., Sokolov, P.A. and Chemeris, N.K., “A study of absorption of energy of the extremely high frequency electromagnetic radiation in the rat skin by various dosimetric methods and approaches”, Biophysics, 47, 759-768, 2002. |
|
[24] | Gapeyev, A.B., Mikhailik, E.N. and Chemeris, N.K., “Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: Frequency and power dependence”, Bioelectromagnetics, 29, 197-206, 2008. |
|
[25] | Vanyushin, B.F., Masin, A.H., Vasiliev, V.R. and Belozersky, A.N., “The content of 5-methylcytosine in animal DNA: the species ant tissue specificity”, Biochem. Et Biophys. Acta, 299, 397-403, 1973. |
|
[26] | Babayan, YS, Khudaverdyan NV, Sngryan HE, Gharibyan JV. “Influence of Imidazen in a combination with RNA on structure of DNA sarcoma 45”, Biophysica, 42(1), 125-8, 1997. |
|
[27] | Babayan, Y.S., Vardevanyan, P.O., and Gharibyan, J.V., “Application of a method of melting in revealing of distinctions between DNA from normal and tumoral tissues”, Biophysica, 29(2), 313-4, 1984. |
|
[28] | Chih-Lin Hsieh, “The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1”, BMC Biochemistry, 6, 6, 2005. |
|
[29] | Li, E. and Bird, A., DNA methylation in mammals Epigenetics-Cold. Spring Harbor (NY): 2007. |
|
[30] | Barret, J.M., Salle, B., Provot, C. and Hill, B.T., “Evaluation of DNA repair inhibition by antitumor or antibiotic drugs using a chemiluminescense microplate assay”, Carcinogenesis, 18, 2441-5, 2005. |
|
[31] | Teppone, M.V. and Avagyan, R.S., “Extremely high frequency (EHF) therapy in oncology”, Millimeter waves in biology and medicine, 29(1), 3-19, 2003. |
|
[32] | Bhattacharya, S., Ramchandani, S., Cervoni, N. and Szyf, M., “A mammalian protein with specific demethylase activity for mCpG DNA”, Nature, 397, 579-83, 1999. |
|
[33] | V., Martirosyan, R., Nersesyan, L., Aharonyan, A., Danielyan, I., Stepanyan, H. at al, “Effect on tumoral cells of low intensity electromagnetic waves”, Progress in Electromagnetics Research Letters, 20, 97-105, 2011. |
|
[34] | Babayan, Y.S. and Gharibyan, J.V., “Structural features of DNA of sarcoma 45 tumor”, Biophysica, 35(4), 592-6, 1990. |
|
[35] | Belyaev, I.Ya., Alipov, Y.D., Shcheglov, V.S. and Lystsov, V.N., “Resonance effect of microwaves on the genome conformational state of E. coli cells”, Z Naturforsch С, 47(7-8), 621-7, 1992. |
|
[36] | Khabarova, O., “The influence of cosmic weather on the Earth.// International School of Space Science. Book of Proceedings of the 10th course on "Sun-Earth Connection and Space Weather" (L'Aquila 2000), Society Italiana di Fisica, 56-62, 2001. |
|
[37] | Weinsburg, S., “DNA Helix found to oscillate in resonance with microwaves”, Science News, 125(16), 248-53, 1984. |
|
[38] | Petrosyan, V.I., Sinitsin, N.I., Elkin. V.A., Devyatkov, N.D., Gulyayev, Y.V., Betskii, O.V., et al.”Role of resonance molecular-wave processes in the nature and their use for the control and corrections of a condition of ecological systems”, Biomeditsinskaya Radioelectronica, No.5-6, 62-105, 2001. |
|
[39] | Adams, P.L. and Eason, R., “Increased GC content of DNA stabilizes methyl CpG dinucleotides”, Nucleic Asids Res, 12(14), 5869-77, 1984. |
|
[40] | Behe, M. and Felsenfeld, G., “Effects of methylation on a synthetic polynucleotide: The B Z transition in poly(dG-m5C)”, Proc. Nat. Acad. Sci. USA, 78(3), 1619-23, 1981. |
|
[41] | Rodionov, B.N., “Energo-informational effect of low-energetic electromagnetic radiations on biological objects”, New Medical Technologies Report, 6(3-4), 24-9, 199. |
|