American Journal of Mathematical Analysis
ISSN (Print): 2333-8490 ISSN (Online): 2333-8431 Website: https://www.sciepub.com/journal/ajma Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Mathematical Analysis. 2015, 3(2), 44-46
DOI: 10.12691/ajma-3-2-4
Open AccessArticle

On the Construction of Families of type П1 Subfactors Each Containing a Middle Subfactors

Bahman Mashood1, and Mahmood Khoshkam1

1Former lecturer at university of Saskatchewan, San Francisco/California

Pub. Date: June 23, 2015

Cite this paper:
Bahman Mashood and Mahmood Khoshkam. On the Construction of Families of type П1 Subfactors Each Containing a Middle Subfactors. American Journal of Mathematical Analysis. 2015; 3(2):44-46. doi: 10.12691/ajma-3-2-4

Abstract

In this article we are going to construct a family of type П1 subfactors each containing a middle subfactor. As a result of the above construction we show that the set of the indices of hyperfinite irreducible subfactors contains the interval [37.0037,∞).

Keywords:
subfactors von Neumann algebras Jones Index lattice relative commutants

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  D.Bisch. A note on intermediate subfactors. Pac.J.Math.163(1994), 201-216.
 
[2]  E.Christensen, Subalgebras of finite algebra, Math.Ann.243(1979), 17-29.
 
[3]  F. Goodman, P. S. Delaharpe and V. Jones, Coxter graph and towers of algebras. Math. Sci. Res. Hist.Publ., Springer-Verlag, V. 14, 1989.
 
[4]  U.Haagerup, Principal graphs of a subfactors, Proceeding of the Tan-guchi Simposium on operator algebras, World scientific, 1999.
 
[5]  V.Jones, Index for subfactors, Invent Math 72 (1983), 1-25.
 
[6]  V.Jones, V.S.Sunder, Introduction to Subfactors. Combridge Univer-sity Press. 1997.
 
[7]  M.Khoshkam and B.Mashood, Rigidity in commuting squres, New Ze-land Journal Of Math. V. 32(2003), 37-56.
 
[8]  M.Khoshkam and B.Mashood, On the relative commutants of subfac-tors, Proceeding of A.M.S 126(1998)2725-2732.
 
[9]  B.Mashood, On a ladder of commuting squares and a pair of factors generated by them, preprint(1990)Dept.Math.University of Victoria. Canada.BC.V8W 2Y2.
 
[10]  B.Mashood, On the tower of relative commutants part-I, Math Japonica 37, No.5(1992)901-906.
 
[11]  B.Mashood, and K.Taylor, On the continuity of the index of subfactor of a finite factor, J.Func.anal.76 no.11(1988)56-66.
 
[12]  A.Ocneanu, Quantized groups, string algreba, operator algebra and application, London Math Society. Lecture notes ser. 136 119-172, Cambridge University Press, 1988.
 
[13]  M.Pimsner, S.Popa, Entropy and Index for subfactors., Ann.Sci.Ecole Norm.Sup. 19 (1986).
 
[14]  M.Pimsner, S.Popa, Finite dimensional approximation for pair of algebras and obstruction for index, J.Func.Anal.98(1991), 270-291.
 
[15]  M.Pimsner, S.Popa, Sur les sous facteurs d'indice fini d'facteur de type II ayant propriet T,C.R.Acad.Sci, 303(1986), 359-361.
 
[16]  S.Popa, Classifcation of amenable subfactors of type II., Acta Math., 172(1994), 163-255.
 
[17]  S.Popa, Sur la classification d' facteur hyperfini, Comtes rendus (1990), 95-100.
 
[18]  N.Sato, Two subfactors arising from a non-degenerate commuting squares, Pac.J.Math.Vol.180, No 2, 1997, 369-376.
 
[19]  H.Wenzl, Hecke algebras of type An and subfactors, Invent, Math.92(1998) 349-383.