[1] | M. J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equationuations and Inverse Scattering, Cambridge University Press, Cambridge, 1991. |
|
[2] | C. H. Gu et al., Soliton Theory and Its Application, Zhejiang Science and Technology Press, Zhejiang, 1990. |
|
[3] | V. B. Matveev and M.A. Salle, Darboux Transformation and Soliton, Springer, Berlin, 1991. |
|
[4] | R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004. |
|
[5] | S.Y. Lou, J.Z. Lu, Special solutions from variable separation approach: Davey-Stewartson equation, J. Phys. A: Math. Gen. 29 (1996) 4209. |
|
[6] | E. J. Parkes and B.R. Duffy, Travelling solitary wave solutions to a compound KdV-Burgers equation, Phys. Lett. A 229 (1997) 217. |
|
[7] | E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000) 212. |
|
[8] | Z. Y. Yan, New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Phys. Lett. A 292 (2001) 100. |
|
[9] | Y. Chen, Y. Zheng, Generalized extended tanh-function method to construct new explicit exact solutions for the approximate equations for long water waves, Int. J. Mod. Phys. C 14 (4) (2003) 601. |
|
[10] | M. L. Wang, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A 216 (1996) 67. |
|
[11] | G. W. Bluman and S. Kumei, Symmetries and Differential Equationuations, Springer-Verlag, New York, 1989. |
|
[12] | P. J. Olver, Applications of Lie Groups to Differential Equationuations, Springer-Verlag, New York, 1986. |
|
[13] | Z. Y. Yan, A reduction mKdV method with symbolic computation to constract new doubly- periodic solutions for nonlinear wave equations, Int. J. Mod. Phys. C, 14 (2003) 661. |
|
[14] | Z. Y. Yan, The new tri-function method to multiple exact solutions of nonlinear wave equations, Physica Scripta, 78 (2008) 035001. |
|
[15] | Z. Y. Yan, Periodic, solitary and rational wave solutions of the 3D extended quantum Zakharov– Kuznetsov equation in dense quantum plasmas, Physics Letters A, 373 (2009) 2432. |
|
[16] | D. C. Lu and B. J. Hong, New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup system, Appl. Math. Comput, 199(2008)572. |
|
[17] | A. V. Porubov, Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid, Phys. Lett. A, 221 (1996) 391. |
|
[18] | M. Wazwaz, The tanh and sine- cosine method for compact and noncompact solutions of nonlinear Klein Gordon equation, Appl. Math. Comput, 167 (2005)1179. |
|
[19] | Z. Y. Yan and H. Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water, Phys. Lett. A, 285 (2001) 355. |
|
[20] | D. C. Lu, Jacobi elliptic functions solutions for two variant Boussinesq equations, Chaos, Solitons and Fractals, 24 (2005) 1373. |
|
[21] | Z. Y. Yan, Abundant families of Jacobi elliptic functions of the (2+1) dimensional integrable Davey- Stawartson-type equation via a new method, Chaos, Solitons and Fractals, 18 (2003) 299. |
|
[22] | C. L. Bai and H. Zhao, Generalized method to construct the solitonic solutions to (3+1)- dimensional nonlinear equation, Phys. Lett. A, 354 (2006) 428. |
|
[23] | F. Cariello and M. Tabor, Similarity reductions from extended Painleve’ expansions for nonintegrable evolution equations, Physica D, 53 (1991) 59. |
|
[24] | M. Wang and X. Li, Extended F-expansion and periodic wave solutions for the generalized Zakharov equations, Phys. Lett. A, 343 (2005) 48. |
|
[25] | X. Feng, Exploratory approach to explicit solution of nonlinear evolution equations, Int. J. Theor. Phys, 39 (2000) 222. |
|
[26] | E. M. E. Zayed and K.A.Gepreel, The (G’/G) −expansion method for finding traveling wave solutions of nonlinear PDEs in mathematical physics, J. Math. Phys., 50 (2009) 013502. |
|
[27] | A. Bekir, Application of the (G’/G)− expansion method for nonlinear evolution equations, Phys. Lett A, 372 (2008) 3400. |
|
[28] | M. Wang, X. Li and J.Zhang, The(G’/G)−expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett A, 372 (2008) 417. |
|
[29] | Q. Ding, The NLS-equation and its SL(2,R) structure, J. Phys. A: Math, 33 (2000) L325. |
|
[30] | A. Bekir, New Exact TravellingWave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equationuations, International Journal of Nonlinear Science,6(2008)46. |
|
[31] | D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech, 25 (1966) 321. |
|