[1] | A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands,2006. |
|
[2] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ,USA, 2000. |
|
[3] | B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003. |
|
[4] | K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY,USA, 1993. |
|
[5] | S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993. |
|
[6] | I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering,Academic Press, San Diego, Calif, USA, 1999. |
|
[7] | K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. |
|
[8] | V. Kiryakova, Generalized Fractional Calculus and Applications, vol. 301 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, UK, 1994. |
|
[9] | I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering,Academic Press, New York, NY, USA, 1999. |
|
[10] | J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, New York, NY, USA, 2007. |
|
[11] | F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, UK, 2010. |
|
[12] | D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Boston, Mass, USA,2012. |
|
[13] | X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong. |
|
[14] | X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012. |
|
[15] | A. H. A. Ali, The modified extended tanh-function method for solving coupled MKdV and coupled Hirota-Satsuma coupled KdV equations, Phys. Lett.A, 363(2007) 420. |
|
[16] | C. Li, A. Chen and J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput .Phys, 230(2011) 3352. |
|
[17] | G. H. Gao, Z. Z. Sun and Y. N. Zhang, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions, J. Comput .Phys, 231(2012) 2865. |
|
[18] | W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J . Numer. Anal, 47(2008/09) 204. |
|
[19] | S. Momani, Z. Odibat and V. S. Erturk, Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation, Phys. Lett. A, 370(2007) 379. |
|
[20] | Z. Odibat and S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett, 21(2008)194. |
|
[21] | Y. Hu, Y. Luo and Z. Lu, Analytical solution of the linear fractional differential equation by Adomian decomposition method, J. Comput. Appl. Math, 215(2008)220. |
|
[22] | A. M. A. El-Sayed and M. Gaber, The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett. A, 359(2006)175. |
|
[23] | A. M. A. El-Sayed, S. H. Behiry and W. E. Raslan, Adomian’s decomposition method for solving an intermediate fractional advection-dispersion equation, Comput . Math. Appl, 59(2010)1759. |
|
[24] | Z. Odibat and S. Momani, The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput . Math. Appl, 58(2009)2199. |
|
[25] | M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl, 345(2008)476. |
|
[26] | G. C. Wu and E. W. M. Lee, Fractional variational iteration method and its application, Phys. Lett. A, 374(2010)2506. |
|
[27] | J.-H.He, Homotopy perturbation technique, Comput Methods. Appl. Mech. Eng, 178(1999)257. |
|
[28] | E. Fan, Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation, Phys. Lett. A, 282(2001)18. |
|
[29] | A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional- order differential equations, Comput. Math. Appl, 59 (2010) 1326. |
|
[30] | Y. Zhou, F. Jiao and J. Li, Existence and uniqueness for p-type fractional neutral differential equations, Nonlinear Anal, 71 (2009) 2724. |
|
[31] | S. Zhang and H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375(2011)1069. |
|
[32] | M. L. Wang, Solitary wave solutions for variant Boussinesq equations,Phys. Lett. A, 199(1995)169. |
|
[33] | G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl, 51(2006)1367. |
|
[34] | G. Jumarie, Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution, J. Appl. Math. Comput, 24 (2007) 31. |
|
[35] | S. Guo, L. Mei, Y. Li and Y. Sun, The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A, 376(2012) 407. |
|
[36] | B. Lu, Bä cklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys. Lett. A, 376 (2012) 2045. |
|
[37] | Y. B. Zhou, M. L. Wang and Y. M. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys.Lett.A, 308(2003)31. |
|
[38] | S. Zhang, Q. A. Zong, D. Liu and Q. Gao, A generalized Exp-function method for fractional Riccati differential equations,Commun. Fract. Calc, 1 (2010) 48. |
|
[39] | Z. S. Lü and H. Q. Zhang, On a new modified extended tanh-function method, Commun. Theor. Phys. (Beijing, China), 39(2003) 405. |
|
[40] | A. Borhanifar and M.M. Kabir, New periodic and soliton solutions by application of Exp-function method for nonlinear evolution equations, J. Comput. Appl. Math, 229 (2009) 158. |
|
[41] | Fei .Xu, Application of Exp-function method to Symmetric Regularized Long Wave (SRLW) equation. Phys. Lett. A, 372 (2008) 252. |
|