[1] | Coronavirus-Vaccine-a-6110.html, 2013. |
|
[2] | http://en.wikipedia.org/wiki/Coronavirus, 2014. |
|
[3] | Khan G (2013). A novel coronavirus capable of lethal human infections: an emerging picture. Virology Journal. 10 (66). http://virologyj.biomedcentral.com/articles/10.1186/1743-422X-10-66. |
|
[4] | Modjarrad K (2016). MERS-CoV vaccine candidates in development: The current landscape. In Vaccine. WHO Product Development for Vaccines Advisory Committee (PDVAC) Pipeline Analyses for 25 Pathogens. Science Direct. Volume 34, Issue 26, 3 June 2016, Pages 2982-2987. |
|
[5] | Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, Drosten C, Drexler JF, Preiser W. Close Relative of Human Middle East Respiratory Syndrome Coronavirus in Bat, South Africa. Publisher: CDC; Journal: Emerging Infectious Disease.s Article Type: Letter; Volume: 19; Issue: 10; Year: 2013; Article ID: 13-0946. |
|
[6] | Wang L, Shi W, Joyce G. M., Modjarrad K, Zhang Y, Leung K, Lees R. C, Zhou T, Yassine M. H,…., Graham S. B (2015. Evaluation of candidate vaccine approaches for MERS-CoV. Nature Communications. Nature Communications 6, Article number: 7712. http://www.nature.com/articles/ncomms8712. |
|
[7] | Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, Lundegaard C, Sette A, Lund O, Bourne PE, Nielsen M, Peters B (2012). Immune epitope database analysis resource. NAR. |
|
[8] | Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B (2008). Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 4:2. |
|
[9] | Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M (2009). NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61: 1-13. |
|
[10] | Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O (2003). Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12: 1007-1017. |
|
[11] | Peters B, Sette A (2005). Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6:132. |
|
[12] | Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M (2013). NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 65(10)711. |
|
[13] | Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Roder G, Peters B, Sette A, Lund O, Buus S (2007). NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2:e796. |
|
[14] | Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, and Lund O (2008). Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol.4 (7)e1000107. |
|
[15] | POORINMOHAMMAD N, MOHABATKAR H (2014). Identification of HLA-A*0201-restricted CTL epitopes from the receptor-binding domain of MERS-CoV spike protein using a combinatorial in silico approach. Turk J Biol, 38: 628-632 © TÜBİTAK. http://journals.tubitak.gov.tr/biology/issues/biy-14-38-5/biy-38-5-10-1401-21.pdf. |
|
[16] | Badawi M.M, Salaheldin A.M, Suliman M.M, AbduRahim A.S, Mohammed AE.A, SidAhmed S A.A, Othman M.M, Salih A.M Salih (2016).In Silico Prediction of a Novel Universal Multi-epitope Peptide Vaccine in the Whole Spike Glycoprotein of MERS CoV. American Journal of Microbiological Research. Vol. 4, No. 4, 2016, pp 101-121. |
|
[17] | Du L, Zhao G, Kou Z (2013). Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol. 87(17):9939-42. |
|
[18] | 18- Mohamed H.A, Mohamed Y. O, AB. Salam S, Yousif A.H, Hassan M.M, Kaheel H.H and Hassan A.M (2014). In Silico analysis of Single Nucleotide Polymorphisms (SNPs) in human FANCA gene. International Journal of Computational Bioinformatics and In Silico Modeling. Vol. 3, No. 5 (2014): 502-513. |
|
[19] | Shi J, Zhang J, Li S, Sun J, Teng Y, Wu M, Li J, Li Y, Hu N, Wang H, Hu Y (2015). Epitope-Based Vaccine Target Screening against Highly Pathogenic MERS-CoV: An In Silico Approach Applied to Emerging Infectious Diseases. PLoS ONE 10(12): e0144475. |
|
[20] | Sharmin R, Abul Bashar Khademul Islam M M AB (2014). A highly conserved WDYPKCDRA epitope in the RNA directed RNA polymerase of human coronaviruses can be used as epitope-based universal vaccine design. BMC Bioinformatics 201415:161. |
|
[21] | Saha, S. and Raghava, G.P.S. (2006). AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research. Volume 34, W202-W209. |
|
[22] | Doytchinova A.I and Flower R.D. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007 8:4. |
|
[23] | Doytchinova A.I and Flower R.D. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine. 2007 25:856-866. |
|
[24] | Doytchinova A.I and Flower R.D. Bioinformatic Approach for Identifying Parasite and Fungal Candidate Subunit Vaccines. Open Vaccines Journal, 2008 1: 22-26. |
|