[1] | H. Fazeli, R. Akbari, S. Moghim, T. Narimani, M. R. Arabestani, and A. R. Ghoddousi, “Pseudomonas aeruginosa infections in patients, hospital means, and personnel’s specimens,” 2012. [Online]. Available: www.mui.ac.ir. |
|
[2] | C. Mesquita, P. Soares-Castro, and P. Santos, “Pseudomonas aeruginosa: phenotypic flexibility and antimicrobial resistance,” undefined, 2013. |
|
[3] | T. Strateva and D. Yordanov, “Pseudomonas aeruginosa - A phenomenon of bacterial resistance,” Journal of Medical Microbiology, vol. 58, no. 9. J Med Microbiol, pp. 1133-1148, Sep. 2009. |
|
[4] | W. H. Zhao and Z. Q. Hu, “β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa,” Critical Reviews in Microbiology, vol. 36, no. 3. pp. 245-258, Aug. 2010. |
|
[5] | J. K. Akhwale et al., “Isolation, characterization and analysis of bacteriophages from the haloalkaline lake Elmenteita, Kenya,” PLoS One, 2019. |
|
[6] | M. Chatterjee, C. P. Anju, L. Biswas, V. Anil Kumar, C. Gopi Mohan, and R. Biswas, “Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options,” International Journal of Medical Microbiology. 2016. |
|
[7] | J. M. Ochieng’Oduor, N. Onkoba, F. Maloba, W. O. Arodi, and A. Nyachieo, “Efficacy of lytic staphylococcus aureus bacteriophage against multidrug-resistant staphylococcus aureus in mice,” J. Infect. Dev. Ctries., 2016. |
|
[8] | A. Dydecka et al., “The ea22 gene of lambdoid phages: preserved prolysogenic function despite of high sequence diversity,” Virus Genes, vol. 56, no. 2, pp. 266-277, Apr. 2020. |
|
[9] | F. Cao et al., “Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice,” Biomed Res. Int., vol. 2015, 2015. |
|
[10] | S. M. Sillankorva, H. Oliveira, and J. Azeredo, “Bacteriophages and their role in food safety,” International Journal of Microbiology. 2012. |
|
[11] | W. N. Arifin and W. M. Zahiruddin, “Sample Size Calculation in Animal Studies Using Resource Equation Approach,” Malays J Med Sci, vol. 24, no. 5, pp. 101-105. |
|
[12] | B. Biswas et al., “Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium,” Infect. Immun., vol. 70, no. 1, pp. 204-210, 2002. |
|
[13] | T. Anand et al., “Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model,” J. Glob. Antimicrob. Resist., vol. 21, pp. 34-41, Jun. 2020. |
|
[14] | A. Revelas, “Healthcare - associated infections: A public health problem,” Niger. Med. J., vol. 53, no. 2, p. 59, 2012. |
|
[15] | X. Wittebole, S. De Roock, and S. M. Opal, “A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens,” Virulence, vol. 5, no. 1. Taylor and Francis Inc., pp. 226-235, 2014. |
|
[16] | H. W. Ackermann, “5500 Phages examined in the electron microscope,” Archives of Virology, vol. 152, no. 2. pp. 227-243, Feb. 2007. |
|
[17] | D. R. Harper and M. C. Enright, “Bacteriophages for the treatment of Pseudomonas aeruginosa infections,” Journal of Applied Microbiology, vol. 111, no. 1. J Appl Microbiol, pp. 1-7, Jul. 2011. |
|
[18] | P. Speck and A. Smithyman, “Safety and efficacy of phage therapy via the intravenous route,” FEMS Microbiol. Lett., vol. 363, no. 3, Dec. 2015. |
|
[19] | D. Maura, E. Morello, L. du Merle, P. Bomme, C. Le Bouguénec, and L. Debarbieux, “Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice,” Environ. Microbiol., vol. 14, no. 8, pp. 1844-1854, Aug. 2012. |
|
[20] | R. Watanabe et al., “Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice,” Antimicrob. Agents Chemother., 2007. |
|