[1] | Davin-Regli A, Lavigne JP, Pages JM. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 32, 2019; 32(4). |
|
[2] | Davin-Regli A, PagèsJM.. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 2015; 6: 392. |
|
[3] | Davin-Regli A, Masi M, Bialek S, Nicolas-Chanoine MH, Pagès JM. Antimicrobial resistance and drug efflux pumps in Enterobacter and Klebsiella. In Li X-Z, Elkins CA, Zgurskaya HI (eds), Efflux-Mediated Drug Resistance in Bacteria: Mechanisms, Regulation and Clinical Implications. Springer International Publishing Switzerland, Adis Springer Nature. 2016. |
|
[4] | Mezzatesta ML, Gona F, Stefania S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol, 2012; 7(7): 887-902. |
|
[5] | Susan W, Simmonds AG, Annavajhala MK, Wang Z, Macesic N, Hu Y et al. Genomic and geographic context for the evolution of high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and ST78. mBio, 2018; 9. |
|
[6] | Gallet AVC, Ocampo AM, Chavda K, Chen L, Barry N. Kreiswirth BN et al. Molecular epidemiology of carbapenem-resistant Enterobacter cloacae complex infections uncovers high frequency of non-carbapenemase-producers in five tertiary care hospitals from Colombia. bioRxiv preprint first posted online, 2018. |
|
[7] | Zhang R, Huang L, Hu YY. Prevalence of fosfomycin resistance and plasmid-mediated fosfomycin-modifying enzymes among carbapenem-resistant Enterobacteriaceae in Zhejiang, China. J Med Microbiol, 2017; 66(9): 1332-1334. |
|
[8] | Sastry S, Doi Y. Fosfomycin: Resurgence of An Old Companion. J Infect Chemother 2016; 22(5):273-80. |
|
[9] | Nakamura G, Wachino J, Sato N, Kimura K, Yamada K, Jin Wet al. Practical agar-based disk potentiation test for detection of fosfomycin-nonsusceptible Escherichia coli clinical isolates producing glutathione S-transferases. J Clin Microbiol, 2014; 52(9): 3175-3179. |
|
[10] | Chessbrough M. Microscopial techniques used in Microbiology, culturing bacterial pathogens, biochemical test to identify bacteria. In: Chessbrough M, ed. District Laboratory Practice in Tropical Countries, Part 2, 2nd edn: Cambridge University Press, India; 2009: pp. 35-195. |
|
[11] | Clinical Laboratory Standards Institute. Performance Standard for Antimicrobial Susceptibility Testing: Twenty-seventh Informational Supplement M200-S28. Wayne, PA, USA: CLSI; 2018. |
|
[12] | European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, valid from 2018-01-01. EUCAST: Clinical breakpoints www.eucast.org/clinicalbreakpoints/(accessed on13.02.2019). |
|
[13] | Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. Wayne, USA: CLSI; 2014. |
|
[14] | Franco MR, Caiaffa-Filho HH, Burattini MN, Rossi F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo), 2010; 65(9): 825-829. |
|
[15] | Ho PL, Chan J, Lo WU, Lai EL, Cheung YY, Chow KH et al. Prevalence and molecular epidemiology of plasmid mediated fosfomycin resistance genes among blood and urinary Escherichia coli isolates. J Med Microbiol, 2013; 62(Pt 11): 1707-1713. |
|
[16] | Benzerara Y, Gallah S, Hommeril B, Genel N, Rottman M, Arlet G et al. Emergence of plasmid-mediated fosfomycin-resistance genes among Escherichia coli isolate, France. Emerg Infect Dis, 2017; 23(9): 1564-1567. |
|
[17] | Wang X, Zhang Z, Hao Q, Wu J, Xiao J, Jinga H. Complete Genome Sequence of Acinetobacter baumannii ZW85-1.GenomeAnnounc, 2014; 2(1). |
|
[18] | Gombert M. E, Aulicino T. M. “Synergism of imipenem and amikacin in combination with other antibiotics against Nocardia asteroids,” Antimicrob Agents Chemother, 24(5): 810-811, 1983. |
|
[19] | Kheshti R, Pourabbas B, Mosayebi M, Vazin A.In vitro activity of colistin in combination with various antimicrobials against Acinetobacter baumannii species. a report from South Iran. Infect. Drug Resist. 2019; 12, 129. |
|
[20] | Toledo PV, Tuon FF, Bali L, Manente F, Arruda P, Aranha-Junior AA. Experimental model for treatment of extended spectrum betalactamase producing-Klebsiella pneumoniae. Arq Bras Cir Diag, 2014; 27(3): 168-171. |
|
[21] | Hernandez MJR, Pachon J, Pichard C, Cuberos L, Martinez JI, Curiel AG et al. Imipenem, doxycycline and amikacin in monotherapy and in combination in Acinetobacter baumanniiexperimental pneumonia. J Antimicrob Chemother, 2000; 45(4): 493-501. |
|
[22] | Markou N, Markantonis S.L, Dimitrakis E, Panidis D, Boutzouka E, Karatzas S et al. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, Gram-negative bacilli infections: A prospective, open-label, uncontrolled study. Clin. Ther. 2008, 30, 143-151. |
|
[23] | Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta Analysis. Adrian Schmid, Aline Wolfensberger, Johannes Nemeth, PeterW. Schreiber, Hugo Sax & Stefan P. Kuster. |
|
[24] | Liu CP, Wang NY, Lee CM, Weng LC, Tseng HK, Liu CW et al. Nosocomial and community-acquired Enterobacter cloacae bloodstream infection: risk factors for and prevalence of SHV-12 in multiresistant isolates in a medical centre. J Hosp Infect, 2004; 58(1): 63-77. |
|
[25] | Dimitrova D, Stoeva T, Markovska R, Stankova P, Mihova K, Kaneva R et al. Molecular epidemiology of multi drug resistant Enterobacter Cloacae blood isolates from a university hospital. J of IMAB, 2019; 25(2): 2457-2464. |
|
[26] | THOMAS TÄNGDÉN. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria, Upsala Journal of Medical Sciences. 2014; 119: 149-153. |
|
[27] | Adhikari RP, Shrestha S, Rai JR, Amatya R. Antimicrobial Resistance Patterns in Clinical Isolates of Enterobacteriaceae from a Tertiary Care Hospital, Kathmandu, Nepal. Nep Med J, 2018; 1: 74-78. |
|
[28] | Gopichand P, Agarwal G, Natarajan M, Mandal J, Deepanjali S, Parameswaran Set al .In vitro effect of fosfomycin on multi-drug resistant gram-negative bacteria causing urinary tract infections. Infect Drug Resist. 2019; 12:2005-2013. |
|
[29] | Wei Yu, Ping Shen, Zhang Bao, Kai Zhou, Beiwen Zheng, Jinru Ji et al. In vitro antibacterial activity of fosfomycin combined with other antimicrobials against KPC-producing Klebsiella pneumoniae. Int J Antimicrob Agents. 2017. Aug; 50(2): 237-241. |
|
[30] | Cai Y, Fan Y, Wang R, An MM, Liang BB. Synergistic effects of aminoglycosides and fosfomycin on Pseudomonas aeruginosa in vitro and biofilm infections in a rat model. J Antimicrob Chemother 2009; 64: 563-6. |
|
[31] | Vergara-López S, Domínguez MC, Conejo MC, Pascual Á, Rodríguez-Baño J. Prolonged treatment with large doses of fosfomycin plus vancomycin and amikacin in a case of bacteraemia due to methicillin-resistant Staphylococcus epidermidis and IMP-8 metallo-β-lactamase-producing Klebsiella oxytoca. J Antimicrob Chemother 2015; 70: 313-15. |
|
[32] | Chukamnerd A, Pomwised R, Phoo M.T.P, Terbtothakun P, Hortiwakul T, Charoenmak B et al. In vitro synergistic activity of fosfomycin in combination with other antimicrobial agents against carbapenem-resistant Klebsiella pneumoniae isolated from patients in a hospital in Thailand. J. Infect. Chemother. 2020, 27, 507-514. |
|
[33] | Montgomery A.B, Rhomberg P.R, Abuan T, Walters K.A, Flamm R.K. Potentiation effects of amikacin and fosfomycin against selected amikacin-nonsusceptible Gram-negative respiratory tract pathogens. Antimicrob. Agents Chemother. 2014, 58, 3714-3719. |
|
[34] | Wei Yu , Qixia Luo , Qingyi Shi , Chen Huang , Xiao Yu , et al . In vitro antibacterial effect of fosfomycin combination therapy against colistin-resistant Klebsiella pneumoniae. Infect. Drug Resist. 2018, 11, 577-585. |
|
[35] | Jia y. The progress in study of fosfomycin. Infection International; 2017; 6(3): 88-92. |
|
[36] | Ebru Evren , Ozlem Kurt Azap, ŞuleÇolakoğlu, Hande Arslan .In vitro activity of fosfomycin in combination with imipenem, meropenem, colistin and tigecycline against OXA 48–positive Klebsiella pneumoniae strains. Diagn Microbiol Infect Dis. 2013; 76(3): 335-8. |
|
[37] | Samonis G, Maraki S, Karageorgopoulos D. E. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis 2012; 31: 695-701. |
|
[38] | Giancola SE, Mahoney MV, Hogan MD, Raux BR, McCoy C, Hirsch EB. Assessment of fosfomycin for complicated or multidrug-resistant urinary tract infections: Patient Characteristics and Outcomes. Chemotherapy, 2017; 62(2): 100-104. |
|
[39] | Dundar, D, Otkun, M. In-vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains. Yonsei Med J 2010; 51: 111-116. |
|
[40] | Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol.2010; 8(6): 423-435. |
|
[41] | Johnson, D. E., Thompson B, Calia F. M, “Comparative Activities of piperacillin, ceftazidime and Amikacin, Alone and in All possible Combinations, against Experimental pseudomonas aeruginosa Infections in Neutropenic Rats,” Antimicrob Agents chemother,. 27(12): 735-739, 1985. |
|
[42] | Inouye S, Niizato T, Komiya I, Yuda Y, Yamada Y. Mode of protective action of fosfomycin against dibekacin-induced nephrotoxicity in the dehydrated rats. J Pharmacobiodyn, 1982; 5(12): 941-950. |
|
[43] | Zhang R, Huang L, Hu YY. Prevalence of fosfomycin resistance and plasmid-mediated fosfomycin-modifying enzymes among carbapenem-resistant Enterobacteriaceae in Zhejiang, China. J Med Microbiol, 2017; 66(9): 1332-1334. |
|
[44] | Jiang Y, Shen P, Zhou Z, Zhang J, Yu Y, Li L. Complete nucleotide sequence of pKP96, a 67 850 bp multiresistance plasmid encoding qnrA1, aac(6')-Ib-cr and blaCTX-M-24 from Klebsiella pneumoniae. J Antimicrob Chemother, 2008; 62(6): 1252-1256. |
|
[45] | Garcia-Muse T, Aguilera A.Causes of genome instability. Annu Rev Genet, 2013; 47: 1-32. |
|