[1] | Xiang K, et al., A Recombinant HAV Expressing a Neutralization Epitope of HEV Induces Immune Response against HAV and HEV in Mice. Viruses, 2017. 9(9). |
|
[2] | Obana S, et al., Epizootiological study of rodent-borne hepatitis E virus HEV-C1 in small mammals in Hanoi, Vietnam. J Vet Med Sci, 2017. 79(1): p. 76-81. |
|
[3] | Baumann-Popczyk A., et al., A cross-sectional study among Polish hunters: seroprevalence of hepatitis E and the analysis of factors contributing to HEV infections. Med Microbiol Immunol, 2017. |
|
[4] | Yin X, X Li, and Z. Feng, Role of Envelopment in the HEV Life Cycle. Viruses, 2016. 8(8). |
|
[5] | Pan, J.S., et al., Application of truncated immunodominant polypeptide from hepatitis E virus (HEV) ORF2 in an assay to exclude nonspecific binding in detecting anti-HEV immunoglobulin M. J Clin Microbiol, 2010. 48(3): p. 779-84. |
|
[6] | Takahashi, M., et al., Prolonged fecal shedding of hepatitis E virus (HEV) during sporadic acute hepatitis E: evaluation of infectivity of HEV in fecal specimens in a cell culture system. J Clin Microbiol, 2007. 45(11): p. 3671-9. |
|
[7] | Tang, Z.M., et al., The Bama miniature swine is susceptible to experimental HEV infection. Sci Rep, 2016. 6: p. 31813. |
|
[8] | Park, W.-J., et al., Hepatitis E virus as an emerging zoonotic pathogen. Journal of veterinary science, 2016. 17(1): p. 1-11. |
|
[9] | Si, F., et al., Construction of an infectious cDNA clone of a swine genotype 3 HEV strain isolated in Shanghai, China. Intervirology, 2014. 57(2): p. 74-82. |
|
[10] | Zhu, Y., et al., Determination of the full-genome sequence of hepatitis E virus (HEV) SAAS-FX17 and use as a reference to identify putative HEV genotype 4 virulence determinants. Virol J, 2012. 9: p. 264. |
|
[11] | Suneetha, P.V., et al., Hepatitis E virus (HEV)-specific T-cell responses are associated with control of HEV infection. Hepatology, 2012. 55(3): p. 695-708. |
|
[12] | Wang, M., et al., Acute, Recent and Past HEV Infection among Voluntary Blood Donors in China: A Systematic Review and Meta-Analysis. PLoS One, 2016. 11(9): p. e0161089. |
|
[13] | Shimizu, K., et al., Serological evidence of infection with rodent-borne hepatitis E virus HEV-C1 or antigenically related virus in humans. J Vet Med Sci, 2016. 78(11): p. 1677-1681. |
|
[14] | Kamar, N., et al., Treatment of HEV Infection in Patients with a Solid-Organ Transplant and Chronic Hepatitis. Viruses, 2016. 8(8). |
|
[15] | Candido, A., et al., Diagnosis of HEV infection by serological and real-time PCR assays: a study on acute non-A-C hepatitis collected from 2004 to 2010 in Italy. BMC Res Notes, 2012. 5: p. 297. |
|
[16] | Verhoef, L., et al., Seroprevalence of hepatitis E antibodies and risk profile of HEV seropositivity in The Netherlands, 2006-2007. Epidemiol Infect, 2012. 140(10): p. 1838-47. |
|
[17] | Takahashi, M., et al., Simultaneous detection of immunoglobulin A (IgA) and IgM antibodies against hepatitis E virus (HEV) Is highly specific for diagnosis of acute HEV infection. J Clin Microbiol, 2005. 43(1): p. 49-56. |
|
[18] | Shrestha, M.P., et al., Safety and efficacy of a recombinant hepatitis E vaccine. New England Journal of Medicine, 2007. 356(9): p. 895-903. |
|
[19] | Zhang, J., et al., Long-term efficacy of a hepatitis E vaccine. New England Journal of Medicine, 2015. 372(10): p. 914-922. |
|
[20] | Taherkhani, R., M. Makvandi, and F. Farshadpour, Development of enzyme-linked immunosorbent assays using 2 truncated ORF2 proteins for detection of IgG antibodies against hepatitis E virus. Annals of laboratory medicine, 2014. 34(2): p. 118-126. |
|
[21] | Bank, B.P.D., National Center of Biotechnology Information (NCBI). National Library of Medicine, NIH, Bethesda, MD, 1994. |
|
[22] | Kumar, S., G. Stecher, and K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 2016. 33(7): p. 1870-1874. |
|
[23] | Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. in Nucleic acids symposium series. 1999. [London]: Information Retrieval Ltd., c1979-c2000. |
|
[24] | Fleri, W., et al., Immune epitope database and analysis resource. 2016. |
|
[25] | Abu-haraz, A.H., et al., Multi Epitope Peptide Vaccine Prediction against Sudan Ebola Virus Using Immuno-Informatics Approaches. Adv Tech Biol Med, 2017. 5(203): p. 2379-1764. 1000203. |
|
[26] | Hasan, M.A., M. Hossain, and M.J. Alam, A computational assay to design an epitope-based Peptide vaccine against Saint Louis encephalitis virus. Bioinformatics and Biology insights, 2013. 7: p. 347. |
|
[27] | Larsen, J.E., O. Lund, and M. Nielsen, Improved method for predicting linear B-cell epitopes. Immunome research, 2006. 2(1): p. 2. |
|
[28] | Emini, E.A., et al., Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of virology, 1985. 55(3): p. 836-839. |
|
[29] | Kolaskar, A. and P.C. Tongaonkar, A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS letters, 1990. 276(1-2): p. 172-174. |
|
[30] | Andreatta, M. and M. Nielsen, Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics, 2015. 32(4): p. 511-517. |
|
[31] | Lundegaard, C., et al., NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic acids research, 2008. 36(suppl_2): p. W509-W512. |
|
[32] | Sidney, J., et al., Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome research, 2008. 4(1): p. 2. |
|
[33] | Wang, P., et al., Peptide binding predictions for HLA DR, DP and DQ molecules. BMC bioinformatics, 2010. 11(1): p. 568. |
|
[34] | Wang, P., et al., A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS computational biology, 2008. 4(4): p. e1000048. |
|
[35] | Nielsen, M. and O. Lund, NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC bioinformatics, 2009. 10(1): p. 296. |
|
[36] | Nielsen, M., C. Lundegaard, and O. Lund, Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC bioinformatics, 2007. 8(1): p. 238. |
|
[37] | Andreatta, M., et al., Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics, 2015. 67(11-12): p. 641-650. |
|
[38] | Buus, S., et al. Prediction of peptide-MHC class II binding affinity with improved binding core identification; implications for the interpretation of T cell cross-reactivity. in 6th Argentinian Conference on Bioinformatics and Computational Biology. 2015. A2B2C. |
|
[39] | Källberg, M., et al., Template-based protein structure modeling using the RaptorX web server. Nature protocols, 2012. 7(8): p. 1511-1522. |
|
[40] | Ma, J., et al., Protein threading using context-specific alignment potential. Bioinformatics, 2013. 29(13): p. i257-i265. |
|
[41] | Peng, J. and J. Xu, A multiple‐template approach to protein threading. Proteins: Structure, Function, and Bioinformatics, 2011. 79(6): p. 1930-1939. |
|
[42] | Bui, H.-H., et al., Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC bioinformatics, 2006. 7(1): p. 153. |
|
[43] | Mori, Y. and Y. Matsuura, Structure of hepatitis E viral particle. Virus research, 2011. 161(1): p. 59-64. |
|
[44] | Nan, Y., et al., Vaccine development against zoonotic hepatitis E virus: open questions and remaining challenges. Frontiers in Microbiology, 2018. 9: p. 266. |
|
[45] | Gu, Y., et al., Structural basis for the neutralization of hepatitis E virus by a cross-genotype antibody. Cell research, 2015. 25(5): p. 604. |
|
[46] | Tang, Z.-M., et al., A novel linear neutralizing epitope of hepatitis E virus. Vaccine, 2015. 33(30): p. 3504-3511. |
|
[47] | Li, S.W., et al., A bacterially expressed particulate hepatitis E vaccine: antigenicity, immunogenicity and protectivity on primates. Vaccine, 2005. 23(22): p. 2893-2901. |
|
[48] | Li, S.-W., et al., Mutational analysis of essential interactions involved in the assembly of hepatitis E virus capsid. Journal of Biological Chemistry, 2005. 280(5): p. 3400-3406. |
|
[49] | Behloul, N., et al., Antigenic composition and immunoreactivity differences between HEV recombinant capsid proteins generated from different genotypes. Infection, Genetics and Evolution, 2015. 34: p. 211-220. |
|
[50] | Li, T.-C., et al., Expression and self-assembly of empty virus-like particles of hepatitis E virus. Journal of virology, 1997. 71(10): p. 7207-7213. |
|
[51] | Li, T.-C., et al., Essential elements of the capsid protein for self-assembly into empty virus-like particles of hepatitis E virus. Journal of virology, 2005. 79(20): p. 12999-13006. |
|
[52] | Yamashita, T., et al., Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proceedings of the National Academy of Sciences, 2009. 106(31): p. 12986-12991. |
|
[53] | Badawi, M.M., et al., Highly conserved epitopes of Zika envelope glycoprotein may act as a novel peptide vaccine with high coverage: immunoinformatics approach. American Journal of Biomedical Research, 2016. 4(3): p. 46-60. |
|
[54] | Perrie, Y., et al., Recent developments in particulate-based vaccines. Recent patents on drug delivery & formulation, 2007. 1(2): p. 117-129. |
|
[55] | Bachler, B.C., et al., Novel biopanning strategy to identify epitopes associated with vaccine protection. Journal of virology, 2013. 87(8): p. 4403-4416. |
|