[1] | J. Fu, Y. Tang, J. Li, Y. Ma, W. Chen and H. Li (2016). Four kinds of the two-equation turbulence model’s research on flow field simulation performance of DPF’s porous media and swirl-type regeneration burner. Applied Thermal Engineering 93, 397-404. |
|
[2] | A. Ridluan, S. Eiamsa-ard, P. Promvonge(2007). Numerical simulation of 3D turbulent isothermal flow in a vortex combustor. International Communications in Heat and Mass Transfer, 34 860-869. |
|
[3] | S. Kucukgokoglan, A. Aroussi, S. J. Pickering (1999). Prediction of interaction between burners in multi burner systems. Ph. D. thesis in Nottingham University of Nottingham. |
|
[4] | I. Yılmaz, M. Tastan, M. Ilbas, C. Tarhan (2013). Effect of turbulence and radiation models on combustion characteristics in propane-hydrogen diffusion flames. Energy Conversion and Management 72, 179-186. |
|
[5] | A. C. Benim (1990). Finite element analysis of confined turbulent swirling flows. International Journal Numerical Methods Fluids 11, 697-717. |
|
[6] | H. Yapıcı et al (2005). Numerical calculation of local entropy generation in a methane-air burner. Energy Conversion and Management 46, 1885-1919. |
|
[7] | L. Ries, J.Carvalho, M.A.R. Nascimento, L.O.Rodrigives, F.Dias ,P.M.Sobrinho (2014). Numerical modeling of flow through an industrial burner orifice. Applied Thermal Engineering 67, 201-213. |
|
[8] | Z. Riahi, M. A. Mergheni, J.C. Sautet, S. b. Nasrallah. Numerical study of turbulent normal diffusion flame ch4-air stabilized by coaxial burner. Thermal science 17 (2013) 1207-1219. |
|
[9] | S. J. Brookes, J. B. Moss (1999). Measurements of Soot and Thermal Radiation from Confined Turbulent Jet Diffusion Flames of Methane. Combustion and Flame 116, 49-61. |
|
[10] | M. Benzitouni, M.S. Boulahlib, Z. Nemouchi (2010). Étude numérique des champs thermique et dynamique des flammes turbulentes premelangées sur un bruleur bunsen. Sciences & technologie 32, 9-16. |
|
[11] | I. Hraiech, J. C. Sautet, M. A. Mergheni, H. B. Ticha, H.Touati, A. Mhimid (2014). Effects of hydrogen addition and Carbone dioxide dilution on the velocity field in non-reacting and reacting flows. International journal of hydrogen energy, 19818-19831. |
|
[12] | B.E. Launder and D.B.Spalding (1986). The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering 3, 267-289. |
|
[13] | B.E. Launder and D.B. Spalding (1972), Lectures in mathematical models of turbulence. Academic Press, London. |
|
[14] | D. C. Wilcox (1998). Turbulence Modeling for CFD.DCW Industries. California, Canada. |
|
[15] | R. Magnussen, B.H. Hjertager (1976). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. |
|
[16] | S. He, W.S. Kim, J.H. Bae (2008). Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical Tube. International Journal of Heat and Mass Transfer 51, 4659-4675. |
|
[17] | T. Deuschle, U. Janoske, M. Piesche, A CFD-model describing filtration, regeneration and deposit rearrangement effects in gas filter systems. Chemical Engineering Journal, 135 (2008) 49-55. |
|
[18] | T. H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu (1995). A New eddy-viscosity model for high Reynolds number turbulent flows: model development and validation, Computers Fluids 24, 227-238. |
|
[19] | V. Yakhot and S. A. Orszag (1986). Renormalization Group Analysis of Turbulence: I. Basic Theory, Journal of Scientific Computing, 11-51. |
|
[20] | Z. Driss, M.S. Abid (2012). Use of the Navier-Stokes Equations to Study of the Flow Generated by Turbines Impellers. Navier-Stokes Equations: Properties, Description and Applications 3, 51-138. |
|
[21] | Z. Driss, M. Ammar, W. Chtourou, M.S. Abid (2011). CFD Modelling of Stirred Tanks. Engineering Applications of Computational Fluid Dynamics 5, 145-258. |
|