American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: https://www.sciepub.com/journal/ajer Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Energy Research. 2014, 2(3), 67-73
DOI: 10.12691/ajer-2-3-4
Open AccessArticle

PIV Measurements to Study the Effect of the Reynolds Number on the Hydrodynamic Structure in a Baffled Vessel Stirred by a Rushton Turbine

Zied Driss1, , Ahmed Kaffel1, Bilel Ben Amira1, Ghazi Bouzgarrou1 and Mohamed Salah Abid1

1Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS), University of Sfax (US), Tunisia

Pub. Date: July 15, 2014

Cite this paper:
Zied Driss, Ahmed Kaffel, Bilel Ben Amira, Ghazi Bouzgarrou and Mohamed Salah Abid. PIV Measurements to Study the Effect of the Reynolds Number on the Hydrodynamic Structure in a Baffled Vessel Stirred by a Rushton Turbine. American Journal of Energy Research. 2014; 2(3):67-73. doi: 10.12691/ajer-2-3-4

Abstract

Turbulent flow inside a cylindrical baffled stirred vessel is studied experimentally for different Reynolds numbers. A set of speed was selected ranging from 100 rpm to 350 rpm. These speeds gave high turbulence but without significant surface vortex formation. Vector field’s maps and contours of time averaged velocities, for both radial and axial components in the impeller stream of a vessel stirred by a Rushton turbine, were determined by means of 2D PIV technique. This study reveals the importance of choosing the whole flow field of the entire vessel in order to provide comprehensive understanding of the flow pattern and mixing conditions which is essential for reliable design.

Keywords:
PIV Reynolds number Rushton turbine baffled vessel turbulent flow hydrodynamic

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Driss, Z., Bouzgarrou, G., Chtourou, W., Kchaou, H., Abid, M. S., “Computational studies of the pitched blade turbines design effect on the stirred tank flow characteristics,” European Journal of Mechanics B/Fluids, 29. 236-245. 2010.
 
[2]  Driss, Z., Karray, S., Chtourou, W., Kchaou, H., Abid, M.S., “A Study of Mixing Structure in Stirred Tanks Equipped with Multiple Four-Blade Rushton Impellers,” Archive of Mechanical Engineering, 59. 53-72. 2012.
 
[3]  Karray, S., Driss, Z., Kchaou, H., Abid, M.S., “Numerical simulation of fluid-structure interaction in a stirred vessel equipped with an anchor impeller,” Journal of Mechanical Science and Technology (JMST), 25. 1749-1760. 2011.
 
[4]  Ammar, M., Chtourou, W., Driss, Z., Abid, M.S., “Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system,” Energy, 36 (8). 5081-5093. 2011
 
[5]  Ammar, M., Chtourou, W., Driss, Z., Abid, M.S., “Modelling of the turbulent flow generated with a PBT turbine in baffled stirred vessels using steady and unsteady models,” Science Academy Transactions on Renewable Energy Systems Engineering and Technology, 1 (4). 134-143. 2011.
 
[6]  Driss, Z., Karray, S., Kchaou, H., Abid, M.S., “Computer simulations of laminar flow generated by an anchor blade and a Maxblend impellers,” Science Academy Transactions on Renewable Energy Systems Engineering and Technology, 1 (3). 68-76. 2011.
 
[7]  Driss, Z., Karray, S., Kchaou, H., Abid, M.S., “CFD simulation of the laminar flow in stirred tanks generated by double helical ribbons and double helical screw ribbons impellers,” Cent. Eur. J. Eng., 1 (4), 413-422. 2011.
 
[8]  Driss, Z., Bouzgarrou, G., Kaffel, A., Abid, M.S., “Experimental Study of the Seeding Concentration on the PIV Measurements Applied to a Stirred Vessel Equipped by a Rushton Turbine,” International Journal of Mechanics and Applications, 2 (5), 93-97. 2012.
 
[9]  Suzukawa, K., Mochizuki, S., Osaka, H., “Effect of the attack angle on the roll and trailing vortex structures in an agitated vessel with a paddle impeller,” Chemical Engineering Science, 61. 2791-2798. 2006
 
[10]  Escudié, R., Liné, A., “Experimental analysis of hydrodynamics in a radially agitated tank,” AIChE Journal, 49 (3). 585-603. 2003.
 
[11]  Aubin, J., Sauze, N.L., Bertrand, J., Fletcher D.F., Xuereb, C., “PIV measurements of flow in an aerated tank stirred by a down and an up-pumping axial flow impellers,” Chemical Engineering Science, 28. 447-456. 2004.
 
[12]  Ranade, V.V., Perrard, M., Xuereb, C., Sauze, N.L., Bertrand, J., “Influence of gas flow rate on the structure of trailing vortices of a rushton turbine: PIV measurements and CFD simulations,” Institution of Chemical Engineers Trans IChemE, 79. 957-964. 2001.
 
[13]  Khan, F.R., Rielly, C.D., Brown, D.A.R., “Angle-resolved stereo-PIV measurements close to a down-pumping pitched-blade turbine,” Chemical Engineering Science 61. 2799-2806. 2006.
 
[14]  Gabriele, A., Nienow, A.W., Simmons, M.J.H., “On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements,” Chemical Engineering Science, 64. 126-143. 2009.
 
[15]  Chunmei, P., Jian, M., Xinhong L., Zhengming, G., “Investigation of fluid flow in a dual Rushton impeller stirred tank using particle image velocimetry,” Chinese Journal of Chemical Engineering, 16 (5). 693-699. 2008.
 
[16]  Li, Z., Bao, Y., Gao, Z., “PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks,” Chemical Engineering Science, 66. 1219-1231. 2011.
 
[17]  Guida, A., Nienow, A.W., Barigou, M., “PEPT measurements of solid-liquid flow field and spatial phase distribution in concentrated mono disperse stirred suspensions,” Chemical Engineering Science, 65. 1905-1914. 2010.
 
[18]  Aubin, J., Sauze, N.L., Bertran, J., Fletcher, D.F., Xuereb, C., “PIV measurements of flow in an aerated tank stirred by a down and an up-pumping axial flow impeller,” Experimental Thermal and Fluid Science, 28. 447-456. 2004.
 
[19]  Guida, A., Nienow, A.W., Barigou, M., “The effects of the azimuthal position of the measurement plane on the flow parameters determined by PIV within a stirred vessel,” Chemical Engineering Science, 65. 2454-2463. 2010.
 
[20]  Baldi, S., Yianneskis, M., “On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements,” Chemical Engineering Science, 59. 2659-2671. 2004.
 
[21]  Keane, R.D., Adrian, R.J., Theory of cross-correlation analysis of PIV images, Appl. Sci. Res., 49. 191-215. 1992.
 
[22]  Adrian, R.J., Twenty years of particle image velocimetry, “Experiments in Fluids,” 39. 159-169. 2005.