American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: https://www.sciepub.com/journal/ajer Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Energy Research. 2025, 13(1), 19-25
DOI: 10.12691/ajer-13-1-3
Open AccessArticle

Modeling and Simulation of A Hydraulic Storage System Powered By A Photovoltaic Generator

Haïdara Savadogo1, , Eric Korsaga1, Toussaint Tilado Guingane1, 2, Dominique Bonkoungou1, 2 and Zacharie Koalaga1

1Laboratoire de Matériaux et Environnement (LAME), Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou, Burkina Faso

2Laboratoire de Sciences et Technologies (LaST), Université Thomas SANKARA, 12 BP 417 Saaba, Burkina Faso

Pub. Date: March 23, 2025

Cite this paper:
Haïdara Savadogo, Eric Korsaga, Toussaint Tilado Guingane, Dominique Bonkoungou and Zacharie Koalaga. Modeling and Simulation of A Hydraulic Storage System Powered By A Photovoltaic Generator. American Journal of Energy Research. 2025; 13(1):19-25. doi: 10.12691/ajer-13-1-3

Abstract

Due to its arid nature and the availability of a large amount of sunlight in the Sahel, water pumping via solar photovoltaic systems can play a very important role in the agricultural and industrial sectors for rural communities in developing countries. However, this type of system could be directly influenced by the variability of sunshine, which fluctuates from day to day and from season to season. To better understand these difficulties, we propose to carry out a theoretical study to improve the performances of a water pumping system comprising a photovoltaic field, an asynchronous motor connected to a surface centrifugal pump and a water reservoir. The aim is to model and simulate the system using Matlab/Simulink software using a dynamic method. This work highlights the evolution of motor pump performance over time, in relation to the intensity of solar lighting. This dynamic method provides a better understanding of immediate changes in performance. The success of this modeling opens the way to practical applications, particularly in remote regions and rural areas where access to water and the electricity grid is limited, environmentally-friendly energy economy.

Keywords:
Photovoltaic generator Asynchronous motor hydraulic storage Modeling Simulation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 12

References:

[1]  R. S. Kookana, P. Drechsel, P. Jamwal, et J. Vanderzalm, «Urbanisation and emerging economies: Issues and potential solutions for water and food security», Science of the Total Environment, vol. 732, p. 139057, 2020.
 
[2]  F. Brikké, M. Bredero, W. Supply, et M. Network, «Linking technology choice with operation and maintenance in the context of community water supply and sanitation: A reference document for planners and project staff», A reference document for planners and project staff». World Health Organization and IRC Water and Sanitation Centre Geneva, Switzerland, 2003. ISBN 92 4 156215 3.
 
[3]  S. Cairncross et V. Valdmanis, «Water supply, sanitation and hygiene promotion (Chapter 41)», In: Jamison DT, Breman JG, Measham AR, et al., editors. Disease Control Priorities in Developing Countries. 2nd edition. Washington (DC): World Bank; 2006. Chap 41.
 
[4]  S. S. Chandel, M. N. Naik, et R. Chandel, «Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies», Renewable and Sustainable Energy Reviews, vol. 49, p. 1084‑1099, 2015.
 
[5]  S. Meunier, M. Heinrich, J. A. Cherni, L. Quéval, P. Dessante, V. Lionel, A. Darga, C. Marchand et B. Multon «Modélisation et validation expérimentale d’un système de pompage photovoltaïque dans une communauté rurale isolée du Burkina Faso», in 3ème Symposium de Génie Electrique (SGE 2018), 2018.
 
[6]  A. I. Imadan, G. C. Semassou, H. A. Saley, L. Sani, et I. D. Boukary, «Dimensionnement et conception d’un système de pompage solaire PV pour le maraichage à ANERSOL au Niger», Afrique SCIENCE, vol. 24, no 2, p. 108‑121, 2024.
 
[7]  D. Abbes, «Contribution au dimensionnement et à l’optimisation des systèmes hybrides éoliens-photovoltaïques avec batteries pour l’habitat résidentiel autonome», Ecole Nationale Supérieure d’Ingénieurs-Poitiers, vol. 27, 2012.
 
[8]  R. Nisha et K. G. Sheela, «Review of PV fed water pumping systems using BLDC Motor», Materials Today: Proceedings, vol. 24, p. 1874‑1881, 2020.
 
[9]  T. T. Assefa et al., «Evaluating irrigation and farming systems with solar MajiPump in Ethiopia», Agronomy, vol. 11, no 1, p. 17, 2020.
 
[10]  C. S. Guno et C. B. Agaton, «Socio-economic and environmental analyses of solar irrigation systems for sustainable agricultural production», Sustainability, vol. 14, no 11, p. 6834, 2022.
 
[11]  M. T. Ejigu, «Solar-powered pump drip irrigation system modeling for establishing resilience livelihoods in South Omo zone and Afar regional state, Ethiopia», Model. Earth Syst. Environ., vol. 7, no 1, p. 511‑521, mars 2021, doi: 10.1007/s40808-020-00927-2.
 
[12]  R. B. Silva, I. Teodoro, J. L. de Souza, R. A. Ferreira, M. A. dos Santos, et G. M. C. Martins, «Water balance and technical-financial performance of irrigation in the cassava cultivation», Revista Ceres, vol. 70, no 5, p. e70507, 2023.
 
[13]  M. Belhadj, T. Benouaz, A. Cheknane, et S. M. E. A. Bekkouche, «Estimation de la puissance maximale produite par un générateur photovoltaïque», Journal of Renewable Energies, vol. 13, no 2, p. 257‑264, 2010.
 
[14]  M. Thiam, O. Dia, M. Diop, G. Sow, L. Thiaw, D. Azilinon et O. Diao, «Détermination des paramètres du modèle à une diode d’un module photovoltaïque», Afrique SCIENCE, vol. 12, no 3, p. 77‑83, 2016.
 
[15]  D. Mitrushi, «Apport d’une station de transfert d’énergie par pompage sur le taux d’intégration des EnR», PhD Thesis, Université Pascal Paoli, Universiteti politeknik i Tiranës. Albanie, 2016.
 
[16]  Éric Simonguy, «Dimensionnement, modélisation et optimisation d’un système PV avec stockage hydraulique destiné à la production d’électricité en site isolé», Thèse de doctorat, Université Joseph Ki-Zerbo, Burkina Faso, 2019.
 
[17]  T. T. Guingane, Z. Koalaga, E. Simonguy, F. Zougmore, et D. Bonkoungou, «Modélisation et simulation d’un champ photovoltaïque utilisant un convertisseur élévateur de tension (boost) avec le logiciel MATLAB/SIMULINK», Journal International de Technologie, de l’Innovation, de la Physique, de l’Energie et de l’Environnement, vol. 2, no 1, 2016.
 
[18]  D. Spirov, V. Lazarov, D. Roye, Z. Zarkov, et O. Mansouri, « Modelisation Des Convertisseurs Statiques Dc-Dc Pour Des Applications Dans Les Energies Renouvelables En Utilisant Matlab/Simulink® », EF 2009, Compiegne, 2009.
 
[19]  M. Muselli, G. Notton, P. Poggi, et A. Louche, « PV-hybrid power systems sizing incorporating battery storage: an analysis via simulation calculations », Renewable Energy, vol. 20, no 1, p. 1‑7, 2000.
 
[20]  A. Betka et A. Moussi, «Performance optimization of a photovoltaic induction motor pumping system», Renewable energy, vol. 29, no 14, p. 2167‑2181, 2004.
 
[21]  J. M. D. Murphy et F. G. Turnbull, Power electronic control of AC motors, 1st ed. Oxford [Oxfordshire] ; New York: Pergamon, 1988.
 
[22]  N. Hidouri et L. Sbita, «Water photovoltaic pumping system based on DTC SPMSM drives», Journal of Electric Engineering: Theory and Application, vol. 1, no 2, p. 111‑119, 2010.
 
[23]  E. Simonguy, E. Korsaga, J. M’boliguipa, T. T. Guingané, et Z. Koalaga, «Performance of photovoltaic pumping station using a centrifugal motor-pump working at fixed speed», International Journal of Engineering &Technology, vol. 7, no 4,p. 7021-7027 ,2018, doi: 10.14419/ijet.v7i4.16825.
 
[24]  H. Suehrcke, J. Appelbaum, et B. Breshef, «Modelling a permanent magnet DC motor/centrifugal pump assembly in a photovoltaic energy system», Solar energy, vol. 59, no 1‑3, p. 37‑42, 1997.
 
[25]  M. Alonso Abella, E. Lorenzo, et F. Chenlo, «PV water pumping systems based on standard frequency converters», Progress in Photovoltaics, vol. 11, no 3, p. 179-191, mai 2003.