American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: https://www.sciepub.com/journal/ajer Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Energy Research. 2024, 12(4), 70-76
DOI: 10.12691/ajer-12-4-1
Open AccessArticle

Evaluating Local Distribution Grid Capacity Under PV Energy Injection

Toussaint Tilado Guingane1, 2, , Éric Korsaga2, Sosthène Tassembedo2, Ousmane Sawadogo3, Raguilignaba Sam2, 3 and Zacharie Koalaga2

1Laboratoire de Sciences et Technologies (LaST), Université Thomas SANKARA, Ouagadougou, Burkina Faso

2Materials and Environment Laboratory,Université Joseph Ki ZERBO Ouagadougou, Burkina-Faso

3Université Nazi BONI, Bobo Dioulasso, Burkina-Faso

Pub. Date: December 09, 2024

Cite this paper:
Toussaint Tilado Guingane, Éric Korsaga, Sosthène Tassembedo, Ousmane Sawadogo, Raguilignaba Sam and Zacharie Koalaga. Evaluating Local Distribution Grid Capacity Under PV Energy Injection. American Journal of Energy Research. 2024; 12(4):70-76. doi: 10.12691/ajer-12-4-1

Abstract

This paper assesses the capacity of a low-voltage distribution network to receive photovoltaic energy. A simulation is carried out in Matlab/Simulink , taking into account the elements representative of the photovoltaic system connected to the grid. The PV generator is simulated under nominal operating conditions. The analyses focus on the total harmonic distortion (THD) of the current and the grid voltage level. Data Analysing collection within the stability limits enabled us to identify a threshold for the penetration rate of 8 to 10% and a maximum penetration rate of around 47%. This is justified by the voltage drop and the unconditional nature of power flows at the limits of massive injections. Injections below the determined threshold have proved to be sources of pollution for the network, while massive injections change the direction of power flow.

Keywords:
distribution grid PV system active power reactive power THD

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 15

References:

[1]  Yuanzhao Li et al., "Distributed PV Carrying Capacity Prediction and Assessment for Differentiated Scenarios Based on CNN-GRU Deep Learning," Frontiers in Energy Research, 2023. ISSN: 2296-598X.
 
[2]  Xiaoling Zhang et al., "Comprehensive Evaluation of Distributed PV Grid-Connected Based on Combined Weighting Weights and TOPSIS-RSR Method," Energy Engineering, 2024.
 
[3]  A. Smith et al., "Impact of High PV Penetration on Local Distribution Grid Capacity and Voltage Stability," Renewable Energy, 2023. ISSN: 0960-1481.
 
[4]  B. Johnson et al., "Optimization of Local Distribution Network Operations under High PV Injection Scenarios," Applied Energy, 2022. ISSN: 0306-2619.
 
[5]   R. Chen et al., "Evaluating the Resilience of Distribution Networks with High Penetration of Distributed PV," Energy Reports, 2023. ISSN: 2352-4847.
 
[6]  L. Wang et al., "Advanced Methods for Local Grid Stability Assessment under Increasing Solar PV Penetration," Journal of Power Systems Engineering, 2022. ISSN: 2227-9245.
 
[7]  IRENA (2021), Renewable capacity statistics 2021 International Renewable Energy Agency.
 
[8]  T. T. Guingane et al, impact de la pénétration du photovoltaïque sur le réseau électrique, American Journal of Innovative Research and Applied Sciences. ISSN 2429-5396.
 
[9]  T. T Guingane et al, Photovoltaic System Connected to the Grid without Battery Storage as a Solution to Electricity Problems in Burkina Faso. International Journal of Engineering Research. 2017, Volume No.6, Issue No, ISSN:2319-6890.
 
[10]  Jean-Marcel Rax, physique de la conversion d’énergie, EDP Sciences, 2015, ISBN: 978-2-7598-0792-5, p270-301.
 
[11]  Antonio Luque and Steven Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 2003, ISBN 0-471-49196-9, p-80.
 
[12]  Thomas Mambrini. Caractérisation de panneaux solaires photovoltaïques en conditions réelles d’implantation et en fonction des différentes technologies. Météorologie. Université Paris Sud - Paris XI, 2014. Français. NNT: 2014PA112380. tel-01164783.
 
[13]  L. Stoyanov. Etude de différentes structures de systèmes hybrides à sources d’énergie renouvelable. PhD thesis, Université de Corse Pasquale Paoli, 28 octobre 2011.
 
[14]  R. Teodorescu and al, Grid Converters for Photovoltaic and Wind Power Systems Grid Synchronization in Three Phase t. 2011.
 
[15]  électriques. Electronique. Université de Poitiers ; École nationale d’ingénieurs de Tunis (Tunisie), 2021. Français. NNT: 2021POIT2262. tel-03343654.
 
[16]  Fang Lin and Luo Hong Ye, advanced DC/AC inverters: applications in renewable energy, Taylor & Francis Group, ISBN 13: 978-1-4665-1138-5, 2013.
 
[17]  T. Esram, P.L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques, IEEE Trans. Energy Conver. 22 (2) 439–449, 2007.
 
[18]  Hanen Abbes et al, Etude comparative de cinq algorithmes de commande MPPT pour un système photovoltaïque, International Journal of Control, Energy and Electrical Engineering (CEEE), ISSN 2356-5608.
 
[19]  Nedjma Aouchiche. Conception d’une commande MPPT optimale à base d’intelligence artificielle d’un système photovoltaïque.. Autre. Université Bourgogne Franche-Comté, 2020.