American Journal of Clinical Medicine Research
ISSN (Print): 2328-4005 ISSN (Online): 2328-403X Website: https://www.sciepub.com/journal/ajcmr Editor-in-chief: Dario Galante
Open Access
Journal Browser
Go
American Journal of Clinical Medicine Research. 2025, 13(2), 24-31
DOI: 10.12691/ajcmr-13-2-2
Open AccessArticle

Short- and Long-Term Effects of Early Weight Bearing After Total Knee Arthroplasty: A Literature Review

Michael Critelli MS1, Kenny Thai BS1, Janae Rasmussen DO2, , Gabrielle Aluisio MBA3, Samuel Song MS4 and Matthew Rohl BS5

1Texas College of Osteopathic Medicine, Fort Worth, TX

2Valley Consortium for Medical Education, Modesto, CA

3Edward Via College of Osteopathic Medicine, Spartanburg, SC

4New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY

5Ohio University Heritage College of Osteopathic Medicine, Dublin, OH

Pub. Date: May 11, 2025

Cite this paper:
Michael Critelli MS, Kenny Thai BS, Janae Rasmussen DO, Gabrielle Aluisio MBA, Samuel Song MS and Matthew Rohl BS. Short- and Long-Term Effects of Early Weight Bearing After Total Knee Arthroplasty: A Literature Review. American Journal of Clinical Medicine Research. 2025; 13(2):24-31. doi: 10.12691/ajcmr-13-2-2

Abstract

Introduction: Total knee arthroplasty (TKA) is a popular choice of surgery to improve mobility and quality of life in select patients with degenerative joint disease of the knee. Many studies have shown early mobilization after TKA leads to decreased hospital costs and hospital length of stay. With its increasing popularity, it is necessary to determine the effects of early weight bearing (EWB) to ensure the effects are positive in the short-term and long-term following TKA. Methods: Five authors searched the databases PubMed, Google Scholar, and Elsevier for relevant articles while evaluating their impact. Reviewers used Boolean operators and search terms including “early weight bearing (EWB),” “total knee arthroplasty (TKA),” and “weight bearing protocols.” Data from the articles was assessed to determine the short-term and long-term effects of EWB after TKA. Results: Four studies indicated significant differences in promoting early weight bearing (EWB) and strength training after total knee arthroplasty (TKA). These significant differences between EWB and limited or non-weight bearing groups include range of motion (ROM), quadriceps strength, less pain, and higher overall satisfaction. Looking at the long-term effects, one study demonstrated that there was no loosening at the bone-cement interface after 2-5 years. Conclusion: The short-term effects of early weight bearing (EWB) are generally positive. Patients, on average, have higher patient-reported outcomes scores, and greater range of motion (ROM) following EWB after total knee arthroplasty (TKA). However, there are limitations in research about the long-term effects of EWB in TKA. Complications, such as implant loosening or malalignment, can occur with trauma to a joint after arthroplasty, especially in the setting of comorbidities like osteoporosis or diabetic neuropathy. Studies highlight the importance of considering patient risk factors for falls or trauma, such as fragility scores and in low-demand geriatric patients. Risk factors for falls post-TKA, such as advanced age, obesity, or intraoperative continuous femoral nerve block, should be considered when planning rehabilitation for TKA patients. Although the short-term benefits are overall positive, more research is necessary to determine if there are higher rates for revision and complications in the long-term in patients that follow EWB protocols.

Keywords:
orthopedic surgery early weight bearing total knee arthroplasty rehabilitation arthroplasty

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Kurtz, S., Ong, K., Lau, E., Mowat, F., & Halpern, M. (2007). Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. The Journal of bone and joint surgery. American volume, 89(4), 780–785.
 
[2]  Aujla, R. S., & Esler, C. N. (2017). Total Knee Arthroplasty for Osteoarthritis in Patients Less Than Fifty-Five Years of Age: A Systematic Review. The Journal of arthroplasty, 32(8), 2598–2603.e1.
 
[3]  Healy, W. L., Della Valle, C. J., Iorio, R., Berend, K. R., Cushner, F. D., Dalury, D. F., & Lonner, J. H. (2013). Complications of total knee arthroplasty: standardized list and definitions of the Knee Society. Clinical orthopaedics and related research, 471(1), 215–220.
 
[4]  Changjun, C., Jingkun, L., Yun, Y., Yingguang, W., Yanjun, R., Debo, Z., Kaining, Z., & Pengde, K. (2023). Enhanced Recovery after Total Joint Arthroplasty (TJA): A Contemporary Systematic Review of Clinical Outcomes and Usage of Key Elements. Orthopaedic surgery, 15(5), 1228–1240.
 
[5]  Chandrasekaran, S., Ariaretnam, S. K., Tsung, J., & Dickison, D. (2009). Early mobilization after total knee replacement reduces the incidence of deep venous thrombosis. ANZ journal of surgery, 79(7-8), 526–529.
 
[6]  Dittmer, D. K., & Teasell, R. (1993). Complications of immobilization and bed rest. Part 1: Musculoskeletal and cardiovascular complications. Canadian family physician Medecin de famille canadien, 39, 1428–1437. .https:// pmc. ncbi.nlm.nih.gov/ articles/PMC2379624/.
 
[7]  Pua, Y. H., & Ong, P. H. (2014). Association of early ambulation with length of stay and costs in total knee arthroplasty: retrospective cohort study. American journal of physical medicine & rehabilitation, 93(11), 962–970.
 
[8]  Ranawat, C. S., Ranawat, A. S., & Mehta, A. (2003). Total knee arthroplasty rehabilitation protocol: What makes the difference? The Journal of Arthroplasty, 18(3), 27–30.
 
[9]  Mistry, J. B., Elmallah, R. D., Bhave, A., Chughtai, M., Cherian, J. J., McGinn, T., Harwin, S. F., & Mont, M. A. (2016). Rehabilitative Guidelines after Total Knee Arthroplasty: A Review. The journal of knee surgery, 29(3), 201–217.
 
[10]  Dávila Castrodad, I. M., Recai, T. M., Abraham, M. M., Etcheson, J. I., Mohamed, N. S., Edalatpour, A., & Delanois, R. E. (2019). Rehabilitation protocols following total knee arthroplasty: a review of study designs and outcome measures. Annals of translational medicine, 7(Suppl 7), S255.
 
[11]  Rutherford, R. W., Jennings, J. M., & Dennis, D. A. (2017). Enhancing Recovery After Total Knee Arthroplasty. Orthopedic Clinics of North America, 48(4), 391–400.
 
[12]  Epstein N. E. (2014). A review article on the benefits of early mobilization following spinal surgery and other medical/surgical procedures. Surgical neurology international, 5(Suppl 3), S66–S73.
 
[13]  Lei, Y. T., Xie, J. W., Huang, Q., Huang, W., & Pei, F. X. (2021). Benefits of early ambulation within 24 h after total knee arthroplasty: a multicenter retrospective cohort study in China. Military Medical Research, 8(1), 17.
 
[14]  Memtsoudis, S. G., Danninger, T., Rasul, R., Poeran, J., Gerner, P., Stundner, O., Mariano, E. R., & Mazumdar, M. (2014). Inpatient falls after total knee arthroplasty: the role of anesthesia type and peripheral nerve blocks. Anesthesiology, 120(3), 551–563.
 
[15]  Wasserstein, D., Farlinger, C., Brull, R., Mahomed, N., & Gandhi, R. (2013). Advanced age, obesity and continuous femoral nerve blockade are independent risk factors for inpatient falls after primary total knee arthroplasty. The Journal of arthroplasty, 28(7), 1121–1124.
 
[16]  Järvenpää, J., Kettunen, J., Kröger, H., & Miettinen, H. (2010). Obesity may impair the early outcome of total knee arthroplasty. Scandinavian journal of surgery: SJS: official organ for the Finnish Surgical Society and the Scandinavian Surgical Society, 99(1), 45–49.
 
[17]  Lo, C. W. T., Tsang, W. W. N., Yan, C. H., Lord, S. R., Hill, K. D., & Wong, A. Y. L. (2019). Risk factors for falls in patients with total hip arthroplasty and total knee arthroplasty: a systematic review and meta-analysis. Osteoarthritis and cartilage, 27(7), 979–993.
 
[18]  Li, J. W., Ma, Y. S., & Xiao, L. K. (2019). Postoperative Pain Management in Total Knee Arthroplasty. Orthopaedic surgery, 11(5), 755–761.
 
[19]  Lavand'homme, P. M., Kehlet, H., Rawal, N., Joshi, G. P., & PROSPECT Working Group of the European Society of Regional Anaesthesia and Pain Therapy (ESRA) (2022). Pain management after total knee arthroplasty: PROcedure SPEcific Postoperative Pain Management recommendations. European journal of anaesthesiology, 39(9), 743–757.
 
[20]  Smith, S. R., Bido, J., Collins, J. E., Yang, H., Katz, J. N., & Losina, E. (2017). Impact of Preoperative Opioid Use on Total Knee Arthroplasty Outcomes. The Journal of bone and joint surgery. American volume, 99(10), 803–808.
 
[21]  Weick, J., Bawa, H., Dirschl, D. R., & Luu, H. H. (2018). Preoperative Opioid Use Is Associated with Higher Readmission and Revision Rates in Total Knee and Total Hip Arthroplasty. The Journal of bone and joint surgery. American volume, 100(14), 1171–1176.
 
[22]  Tazreean, R., Nelson, G., & Twomey, R. (2022). Early mobilization in enhanced recovery after surgery pathways: current evidence and recent advancements. Journal of comparative effectiveness research, 11(2), 121–129.
 
[23]  Den Hertog, A., Gliesche, K., Timm, J., Mühlbauer, B., & Zebrowski, S. (2012). Pathway-controlled fast-track rehabilitation after total knee arthroplasty: a randomized prospective clinical study evaluating the recovery pattern, drug consumption, and length of stay. Archives of orthopaedic and trauma surgery, 132(8), 1153–1163.
 
[24]  Ascione, F., Braile, A., Romano, A. M., di Giunta, A., Masciangelo, M., Senorsky, E. H., Samuelsson, K., & Marzano, N. (2020). Experience-optimised fast track improves outcomes and decreases complications in total knee arthroplasty. The Knee, 27(2), 500–508.
 
[25]  Sharma, S., Iorio, R., Specht, L. M., Davies-Lepie, S., & Healy, W. L. (2010). Complications of femoral nerve block for total knee arthroplasty. Clinical orthopaedics and related research, 468(1), 135–140.
 
[26]  Karkhur, Y., Mahajan, R., Kakralia, A., Pandey, A. P., & Kapoor, M. C. (2018). A comparative analysis of femoral nerve block with adductor canal block following total knee arthroplasty: A systematic literature review. Journal of anaesthesiology, clinical pharmacology, 34(4), 433–438.
 
[27]  Tan, Z., Kang, P., Pei, F., Shen, B., Zhou, Z., & Yang, J. (2018). A comparison of adductor canal block and femoral nerve block after total-knee arthroplasty regarding analgesic effect, effectiveness of early rehabilitation, and lateral knee pain relief in the early stage. Medicine, 97(48), e13391.
 
[28]  Stambough, J. B., Edwards, P. K., Mannen, E. M., Barnes, C. L., & Mears, S. C. (2019). Flexion Instability After Total Knee Arthroplasty. The Journal of the American Academy of Orthopaedic Surgeons, 27(17), 642–651.
 
[29]  Fakoya, K., Sedarous, R., Seifo, M., & Okoro, T. (2022). An Assessment of Factors That Influence Outcome Following Fixation of Periprosthetic Distal Femur Fractures Associated with Total Knee Arthroplasty. Ortopedia, Traumatologia, Rehabilitacja, 24(3), 193–199.
 
[30]  Wood, M. J., Al-Jabri, T., Stelzhammer, T., Brivio, A., Donaldson, J., Skinner, J. A., & Barrett, D. (2024). Distal femoral replacement for the treatment of periprosthetic distal femoral fractures around a total knee arthroplasty: a meta-analysis. Orthopedic reviews, 16, 94574.
 
[31]  Della Rocca G. J. (2013). Periprosthetic fractures about the knee - an overview. The journal of knee surgery, 26(1), 3–7.
 
[32]  Watanabe, N., Kajikawa, Y., Yotsumoto, T., Kanda, T., Ikeda, R., Takehara, G., Oshima, Y., Takahashi, K., & Watanabe, Y. (2024). Postoperative early weight-bearing using double plating for periprosthetic, interprosthetic, and interimplant distal femur fractures following total knee arthroplasty: A report of three cases. Trauma case reports, 52, 101069.
 
[33]  Koseki, K., Mutsuzaki, H., Yoshikawa, K., Iwai, K., Hashizume, Y., Nakazawa, R., & Kohno, Y. (2021). Early Recovery of Walking Ability in Patients after Total Knee Arthroplasty Using a Hip-Wearable Exoskeleton Robot: A Case-Controlled Clinical Trial. Geriatric orthopaedic surgery & rehabilitation, 12, 21514593211027675.
 
[34]  Bade, M. J., Struessel, T., Dayton, M., Foran, J., Kim, R. H., Miner, T., Wolfe, P., Kohrt, W. M., Dennis, D., & Stevens-Lapsley, J. E. (2017). Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial. Arthritis care & research, 69(9), 1360–1368.
 
[35]  Wainwright, T. W., Gill, M., McDonald, D. A., Middleton, R. G., Reed, M., Sahota, O., Yates, P., & Ljungqvist, O. (2020). Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery after Surgery (ERAS®) Society recommendations. Acta orthopaedica, 91(1), 3–19.
 
[36]  Labraca, N. S., Castro-Sánchez, A. M., Matarán-Peñarrocha, G. A., Arroyo-Morales, M., Sánchez-Joya, M.delM., & Moreno-Lorenzo, C. (2011). Benefits of starting rehabilitation within 24 hours of primary total knee arthroplasty: randomized clinical trial. Clinical rehabilitation, 25(6), 557–566.
 
[37]  Harikesavan, K., Chakravarty, R. D., & Maiya, A. G. (2019). Influence of early mobilization program on pain, self-reported and performance based functional measures following total knee replacement. Journal of clinical orthopaedics and trauma, 10(2), 340–344.
 
[38]  Jiao, S., Feng, Z., Dai, T., Huang, J., Liu, R., & Meng, Q. (2024). High-Intensity Progressive Rehabilitation Versus Routine Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial. The Journal of arthroplasty, 39(3), 665–671.e2.
 
[39]  Larsen, K., Sørensen, O. G., Hansen, T. B., Thomsen, P. B., & Søballe, K. (2008). Accelerated perioperative care and rehabilitation intervention for hip and knee replacement is effective: a randomized clinical trial involving 87 patients with 3 months of follow-up. Acta orthopaedica, 79(2), 149–159.
 
[40]  Guerra, M. L., Singh, P. J., & Taylor, N. F. (2015). Early mobilization of patients who have had a hip or knee joint replacement reduces length of stay in hospital: a systematic review. Clinical rehabilitation, 29(9), 844–854.
 
[41]  Thwin, L., Chee, B. R. K., Yap, Y. M., & Tan, K. G. (2024). Total knee arthroplasty: does ultra-early physical therapy improve functional outcomes and reduce length of stay? A retrospective cohort study. Journal of orthopaedic surgery and research, 19(1), 288.
 
[42]  Rand, J. A., Trousdale, R. T., Ilstrup, D. M., & Harmsen, W. S. (2003). Factors affecting the durability of primary total knee prostheses. The Journal of bone and joint surgery. American volume, 85(2), 259–265.
 
[43]  Evans, J. T., Walker, R. W., Evans, J. P., Blom, A. W., Sayers, A., & Whitehouse, M. R. (2019). How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet, 393(10172), 655-663.
 
[44]  Tanzer, M., & Makhdom, A. M. (2016). Preoperative Planning in Primary Total Knee Arthroplasty. J Am Acad Orthop Surg, 24(4), 220-230.
 
[45]  Pitta, M., Esposito, C. I., Li, Z., Lee, Y. Y., Wright, T. M., & Padgett, D. E. (2018). Failure after Modern Total Knee Arthroplasty: A Prospective Study of 18,065 Knees. J Arthroplasty, 33(2), 407-414.
 
[46]  Pozzi, F., White, D. K., Snyder-Mackler, L., & Zeni, J. A. (2020). Restoring physical function after knee replacement: a cross sectional comparison of progressive strengthening vs standard physical therapy. Physiotherapy theory and practice, 36(1), 122–133.
 
[47]  Shimizu, N., Tomita, T., Yamazaki, T., Yoshikawa, H., & Sugamoto, K. (2011). The effect of weight-bearing condition on kinematics of a high-flexion, posterior-stabilized knee prosthesis. The Journal of arthroplasty, 26(7), 1031–1037.
 
[48]  Kurtz, P. W., Kurtz, M. A., Aslani, S., Taylor, L. M., Goodwin, C. M., MacDonald, D. W., Piuzzi, N. S., Mihalko, W. M., Kurtz, S. M., & Gilbert, J. L. (2024). Wear, Material Transfer, and Electrocautery Damage Are Ubiquitous on CoCrMo Femoral Knee Retrievals. J Biomed Mater Res B Appl Biomater, 112(12), e35504.
 
[49]  Crawford, D. A., Adams, J. B., Hobbs, G. R., Berend, K. R., & Lombardi, A. V., Jr. (2020). Higher Activity Level Following Total Knee Arthroplasty Is Not Deleterious to Mid-Term Implant Survivorship. J Arthroplasty, 35(1), 116-120.
 
[50]  Pearse, E. O., Caldwell, B. F., Lockwood, R. J., & Hollard, J. (2007). Early mobilisation after conventional knee replacement may reduce the risk of postoperative venous thromboembolism. The Journal of bone and joint surgery. British volume, 89(3), 316–322.
 
[51]  Nowak, L. L., & Schemitsch, E. H. (2023). Trends in Outpatient Total Knee Arthroplasty From 2012 to 2020. The Journal of arthroplasty, 38(6S), S21–S25.
 
[52]  Jacobs, J. J., Mont, M. A., Bozic, K. J., Della Valle, C. J., Goodman, S. B., Lewis, C. G., Yates, A. C., Jr, Boggio, L. N., Watters, W. C., 3rd, Turkelson, C. M., Wies, J. L., Sluka, P., & Hitchcock, K. (2012). American Academy of Orthopaedic Surgeons clinical practice guideline on: preventing venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. The Journal of bone and joint surgery. American volume, 94(8), 746–747.
 
[53]  Berend, K. R., Lombardi, A. V., Jr, & Mallory, T. H. (2004). Rapid recovery protocol for peri-operative care of total hip and total knee arthroplasty patients. Surgical technology international, 13, 239–247. PMID: 15744696.
 
[54]  Fransen, B. L., Hoozemans, M. J. M., Argelo, K. D. S., Keijser, L. C. M., & Burger, B. J. (2018). Fast-track total knee arthroplasty improved clinical and functional outcome in the first 7 days after surgery: a randomized controlled pilot study with 5-year follow-up. Archives of orthopaedic and trauma surgery, 138(9), 1305–1316.
 
[55]  Tay, M. L., Zeng, N., Holland, S., Bayan, A., Farrington, B. J., van Rooyen, R., Sharp, R., Elliott, R. S. J., Walker, M. L., & Young, S. W. (2022). The Knee-Fix study: study protocol for a randomised controlled trial evaluating cemented and cementless components in total knee arthroplasty. Trials, 23(1), 1032.
 
[56]  Forlenza, E. M., Serino, J., 3rd, Terhune, E. B., Weintraub, M. T., Nam, D., & Della Valle, C. J. (2023). Cementless Total Knee Arthroplasty is Associated With Early Aseptic Loosening in a Large National Database. The Journal of arthroplasty, 38(7 Suppl 2), S215–S220.
 
[57]  Chen, C., Shi, Y., Wu, Z., Gao, Z., Chen, Y., Guo, C., & Bao, X. (2021). Long-term effects of cemented and cementless fixations of total knee arthroplasty: a meta-analysis and systematic review of randomized controlled trials. Journal of orthopaedic surgery and research, 16(1), 590.
 
[58]  Mosher, Z. A., Bolognesi, M. P., Malkani, A. L., Meneghini, R. M., Oni, J. K., & Fricka, K. B. (2024). Cementless Total Knee Arthroplasty: A Resurgence-Who, When, Where, and How?. The Journal of arthroplasty, 39(9S2), S45–S53.
 
[59]  Gibon, E., Lewallen, D. G., Larson, D. R., Stuart, M. J., Pagnano, M. W., & Abdel, M. P. (2023). John N. Insall Award: Randomized Clinical Trial of Cementless Versus Cemented Tibial Components: Durable and Reliable at a Mean 10-Years Follow-Up. The Journal of arthroplasty, 38(6S), S14–S20.
 
[60]  Anderson, P. M., Heinz, T., Scholmann, E., Eidmann, A., Arnholdt, J., Rudert, M., Holzapfel, B. M., & Stratos, I. (2023). Efficacy of post-operative partial weight-bearing after total knee arthroplasty - a prospective observational trial. International orthopaedics, 47(9), 2189–2195.
 
[61]  American Academy of Orthopedic Surgeons (2022). Surgical Management of Osteoarthritis of the Knee.
 
[62]  Chua, M. J., Hart, A. J., Mittal, R., Harris, I. A., Xuan, W., & Naylor, J. M. (2017). Early mobilisation after total hip or knee arthroplasty: A multicentre prospective observational study. PloS one, 12(6), e0179820.
 
[63]  Rullán, P. J., Xu, J. R., Emara, A. K., Molloy, R. M., Krebs, V. E., Mont, M. A., & Piuzzi, N. S. (2023). Major National Shifts to Outpatient Total Knee Arthroplasties in the United States: A 10-Year Trends Analysis of Procedure Volumes, Complications, and Healthcare Utilizations (2010 to 2020). The Journal of arthroplasty, 38(7), 1209–1216.e5.
 
[64]  Tarazi, J. M., Chen, Z., Scuderi, G. R., & Mont, M. A. (2021). The Epidemiology of Revision Total Knee Arthroplasty. The journal of knee surgery, 34(13), 1396–1401.
 
[65]  Sattler, L. N., Hing, W. A., & Vertullo, C. J. (2019). What is the evidence to support early supervised exercise therapy after primary total knee replacement? A systematic review and meta-analysis. BMC musculoskeletal disorders, 20(1), 42.