American Journal of Civil Engineering and Architecture
ISSN (Print): 2328-398X ISSN (Online): 2328-3998 Website: https://www.sciepub.com/journal/ajcea Editor-in-chief: Dr. Mohammad Arif Kamal
Open Access
Journal Browser
Go
American Journal of Civil Engineering and Architecture. 2024, 12(4), 91-97
DOI: 10.12691/ajcea-12-4-3
Open AccessArticle

Influence of Non-Cohesive Soils with Induced Structural Heterogeneities on Internal Erosion Due to Suffusion

Ouaga Jean-Bruce Gboga1 and Athanas Konin1,

1School of Civil Engineering, Felix Houphouët-Boigny National Polytechnical Institute (INP-HB), Yamoussoukro, Ivory Coast

Pub. Date: September 04, 2024

Cite this paper:
Ouaga Jean-Bruce Gboga and Athanas Konin. Influence of Non-Cohesive Soils with Induced Structural Heterogeneities on Internal Erosion Due to Suffusion. American Journal of Civil Engineering and Architecture. 2024; 12(4):91-97. doi: 10.12691/ajcea-12-4-3

Abstract

This paper presents an experimental study focused on the behavior of non-cohesive soils presenting structural heterogeneities subjected to internal erosion due to suffusion. The suffusion tests were performed by applying a downward seepage flow under multi-staged hydraulic gradient. Experiments were carried out at the scale of a soil sample. Soil samples with structural homogeneity and soil samples with structural heterogeneities were tested. Homogeneous soil samples were used as reference. Two heterogeneity configurations based on fines content (15% and 25%) and density index (ID = 0.1 and ID = 0.4) were tested. Measurement of flow velocity, total eroded mass and erosion rate were carried out. For the tested configurations, results show that soils with induced structural heterogeneities are more erodible than soils with homogeneous structure, independently of the fines content and the density index. The homogeneous specimens with low density index (ID = 0.1) are more erodible than those with medium density index (ID = 0.4).

Keywords:
suffusion non-cohesive soil structural heterogeneity hydraulic gradient density index

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  M. Foster, R. Fell, et M. Spannagle, « The statistics of embankment dam failures and accidents », Can. Geotech. J., vol. 37, no 5, 2000.
 
[2]  ERINOH : Érosion interne dans les Ouvrages Hydrauliques - Volume 2: Méthodologie de reconnaissance et de diagnostic de l’érosion interne des ouvrages hydrauliques en remblai. Paris: Collection IREX, Ponts Chaussées, 2018.
 
[3]  R. Fell et J.-J. Fry, Internal Erosion of Dams and Their Foundations. in Selected and Reviewed Papers from the Workshop on Internal Erosion and Piping of Dams and their Foundations. Taylor & Francis, 2005.
 
[4]  L. M. Zhang, Y. Xu, J. S. Jia, et C. Zhao, « Diagnosis of embankment dam distresses using Bayesian networks. Part I. Global-level characteristics based on a dam distress database », Can. Geotech. J., vol. 48, no 11, 2011.
 
[5]  E. Vincens et K.-J. U. W. Homberg, « Approaches to determine the constriction size distribution for understanding filtration phenomena in granular materials », Acta Geotech., vol. 10, no 3, 2014.
 
[6]  S. Kowalczyk, M. Maślakowski, et P. Tucholka, « Determination of the correlation between the electrical resistivity of non-cohesive soils and the degree of compaction », J. Appl. Geophys., vol. 110, p. 43‑50, nov. 2014.
 
[7]  J. Israr, B. Indraratna, et C. Rujikiatkamjorn, « Laboratory Investigation of the Seepage Induced Response of Granular Soils Under Static and Cyclic Loading », Geotech. Test. J., vol. 39, no 5, 2016.
 
[8]  A. W. Skempton et J. M. Brogan, « Experiments on Piping in Sandy Gravels », Geotechnique, vol. 44, no 3, sept. 1994.
 
[9]  R. J. Fannin et R. Moffat, «Observations on internal stability of cohesionless soils», Géotechnique, vol. 56, no 7, p. 497‑500, sept. 2006.
 
[10]  D. S. Chang et L. M. Zhang, «A Stress-controlled Erosion Apparatus for Studying Internal Erosion in Soils», Géotechnical Test. J., vol. 34, no 6, 2011.
 
[11]  L. Ke et A. Takahashi, « Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow », Soils Found., vol. 52, no 4, p. 698‑711, 2012.
 
[12]  A. Rochim, D. Marot, L. Sibille, et L. Van Thao, « Effects of Hydraulic Loading History on Suffusion Susceptibility of Cohesionless Soils », J. Geotech. Geoenvironmental Eng., vol. 143, p. 04017025, 2017.
 
[13]  C. D. Nguyen, « Etude expérimentale de l’impact de l’érosion par suffusion sur les propriétés physiques et mécaniques des sols », These de doctorat, Aix-Marseille, 2018.
 
[14]  Y. Luo, X. Zhang, et M. Xiao, « Influence of constriction-based retention ratio on suffusion in double-layered alluvial foundation with a cutoff wall », Soils Found., vol. 60, no 6, p. 1489‑1506, déc. 2020.
 
[15]  M. Oueidat, A. Benamar, et A. Bennabi, « Effect of Fine Particles and Soil Heterogeneity on the Initiation of Suffusion », Geotech. Geol. Eng., vol. 39, mars 2021.
 
[16]  Z. Deng, X. Chen, W. Jin, et G. Wang, « Effect of Gradation Characteristics and Particle Morphology on Internal Erosion of Sandy Gravels: A Large-Scale Experimental Study », Water, vol. 15, no 2660, 2023.
 
[17]  R. Fellag, «Phénomènes d’érosion interne dans les graves et les sols grossiers : Application aux digues et aux barrages», These de doctorat, Université Paris-Est, 2016.
 
[18]  M. J. Sulewska, «Prediction Models for Minimum and Maximum Dry Density of Non-Cohesive Soils», Pol. J. Environ. Stud., vol. 19, no 4, 2010.
 
[19]  A. Silviera, « An analysis of the problem of washing through in protective filters. », in Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, mmontréal, Canada, 1965, p. 551-555.
 
[20]  R. Fell et J.-J. Fry, « State of The Art on the Likelihood of Internal Erosion of Dams and Levees by Means of Testing », in Erosion in Geomechanics Applied to Dams and Levees, John Wiley & Sons, Ltd, 2013, p. 1‑99.
 
[21]  L. N. Reddi, I. M. Lee, et M. V. S. Bonala, « Comparison of Internal and Surface Erosion Using Flow Pump Tests on a Sand-Kaolinite Mixture | Semantic Scholar », Geotech. Test. J., vol. 23, no Mars, 2000.
 
[22]  Z. Q. Zhou, P. G. Ranjith, et S. C. Li, «An experimental testing apparatus for study of suffusion of granular soils in geological structures», Tunn. Undergr. Space Technol., vol. 78, p. 222‑230, 2018.
 
[23]  S. S. Tomlinson et Y. P. Vaid, « Seepage forces and confining pressure effects on piping erosion », Can. Geotech. J., vol. 37, no 1, p. 1‑13, févr. 2000.
 
[24]  G. Deng, L.-L. Zhang, R. Chen, L. Liu, K.-X. Shu, et Z.-L. Zhou, «Experimental Investigation on Suffusion Characteristics of Cohesionless Soils along Horizontal Seepage Flow under Controlled Vertical Stress», Front. Earth Sci., vol. 8, p. 195, juin 2020.
 
[25]  A. Benamar, T. Karoui, A. Bennabi, A. Seghir, et H. Q. Wang, « Influence of fine particles on internal erosion of sandy Soils », in Environmental Science, Paris, France, 2012.