[1] | H. B. Seed, C. K. Chan, and C. E. Lee, “Resilience characteristics of subgrade soils and their relation to fatigue failures in asphalt pavements,” in International Conference on the Structural Design of Asphalt Pavements. SupplementUniversity of Michigan, Ann Arbor, 1962. |
|
[2] | J. Uzan, “Characterization of granular material,” Transp. Res. Rec., vol. 1022, no. 1, pp. 52-59, 1985. |
|
[3] | F. Lekarp, U. Isacsson, and A. Dawson, “State of the art. I: Resilient response of unbound aggregates,” J. Transp. Eng., vol. 126, no. 1, pp. 66-75, 2000. |
|
[4] | D. Andrei, M. W. Witczak, and W. N. Houston, “Resilient modulus predictive model for unbound pavement materials,” in Contemporary Topics in Ground Modification, Problem Soils, and Geo-Support, 2009, pp. 401-408. |
|
[5] | M. Ba, “Effect of Compaction Moisture Content on the Resilient Modulus of Unbound Aggregates from Senegal (West Africa),” Geomaterials, vol. 02, no. 01, pp. 19-23, 2012. |
|
[6] | Y. Yao, J. Zheng, J. Zhang, J. Peng, and J. Li, “Model for Predicting Resilient Modulus of Unsaturated Subgrade Soils in South China,” KSCE J. Civ. Eng., vol. 22, no. 6, pp. 2089-2098, 2018. |
|
[7] | A. M. Rahim and K. P. George, “Models to estimate subgrade resilient modulus for pavement design,” Int. J. Pavement Eng., vol. 6, no. 2, pp. 89-96, 2005. |
|
[8] | C. L. Monismith, H. B. Seed, F. G. Mitry, and C. Chan, “Predictions of pavement deflections from laboratory tests,” in Second International Conference on the Structural Design of Asphalt PavementsUniversity of Michigan, Ann Arbor, 1967. |
|
[9] | P. Kolisoja, Resilient deformation characteristics of granular materials. Tampere University of Technology Finland, Publications, 1997. |
|
[10] | A. Cabrera, “Evaluation of the laboratory resilient modulus test using a New Mexico subgrade soil,” 2012. |
|
[11] | A. S. El-Ashwah, A. M. Awed, S. M. El-Badawy, and A. R. Gabr, “A new approach for developing resilient modulus master surface to characterize granular pavement materials and subgrade soils,” Constr. Build. Mater., vol. 194, pp. 372-385, 2018. |
|
[12] | R. Mousa, A. Gabr, M. G. Arab, A. Azam, and S. El-Badawy, “Resilient modulus for unbound granular materials and subgrade soils in Egypt,” in MATEC Web of Conferences, 2017, vol. 120, p. 6009. |
|
[13] | M. G. Arab, R. A. Mousa, A. R. Gabr, A. M. Azam, S. M. El-Badawy, and A. F. Hassan, “Resilient Behavior of Sodium Alginate-Treated Cohesive Soils for Pavement Applications,” J. Mater. Civ. Eng., vol. 31, no. 1, p. 4018361, 2019. |
|
[14] | M. A. Shahin, M. B. Jaksa, and H. R. Maier, “Artificial neural network applications in geotechnical engineering,” Aust. Geomech., vol. 36, no. 1, pp. 49-62, 2001. |
|
[15] | Y. M. Najjar, I. A. Basheer, H. E. Ali, and R. L. McReynolds, “Swelling potential of Kansas soils: Modeling and validation using artificial neural network reliability approach,” Transp. Res. Rec., vol. 1736, no. 1, pp. 141-147, 2000. |
|
[16] | R. Ranasinghe, M. B. Jaksa, Y. L. Kuo, and F. P. Nejad, “Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results,” J. Rock Mech. Geotech. Eng., vol. 9, no. 2, pp. 340-349, 2017. |
|
[17] | R. W. Meier, D. R. Alexander, and R. B. Freeman, “Using artificial neural networks as a forward approach to backcalculation,” Transp. Res. Rec., vol. 1570, no. 1, pp. 126-133, 1997. |
|
[18] | S. Sharma and A. Das, “Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network,” Can. J. Civ. Eng., vol. 35, no. 1, pp. 57-66, 2008. |
|
[19] | M. S. S. Far, B. S. Underwood, S. R. Ranjithan, Y. R. Kim, and N. Jackson, “Application of artificial neural networks for estimating dynamic modulus of asphalt concrete,” Transp. Res. Rec., vol. 2127, no. 1, pp. 173-186, 2009. |
|
[20] | ASTM D698 - 12e2, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)),” 2012. |
|
[21] | ASTM:D1883, “Standard Test Method for CBR ( California Bearing Ratio ) of Laboratory-Compacted,” 2016. |
|
[22] | ASTM D4318, “Standard Test Methods for Liquid Limit , Plastic Limit , and Plasticity Index of Soils,” 2017. |
|
[23] | ASTM: D422 - 63, “ASTM D422: Standard Test Method for Particle-Size Analysis of Soils,” ASTM Stand. Guid., vol. i, no. Reapproved 2007, pp. 1-8, 2007. |
|
[24] | ASTM:D2487, “Standard Practice for Classification of Soils for Engineering Purposes ( Unified Soil Classification System ),” 2017. |
|
[25] | AASHTO T307, “Standard method of test for determining the resilient modulus of soils and aggregate materials,” Am. Assoc. State Highw. Transp. Off. Washingt., vol. 99, 2017. |
|