American Journal of Biomedical Research
ISSN (Print): 2328-3947 ISSN (Online): 2328-3955 Website: https://www.sciepub.com/journal/ajbr Editor-in-chief: Hari K. Koul
Open Access
Journal Browser
Go
American Journal of Biomedical Research. 2024, 12(1), 1-10
DOI: 10.12691/ajbr-12-1-1
Open AccessArticle

Predictive Potential of the Triglycerides-Glucose Index for Type 2 Diabetes in Benin: A Descriptive Cross-Sectional Study

Akodji Dèfognon Fiacre Marcos Migan1, Augustin Gaétan Julien Sègbo1, Edgard-Roméo Tchéoubi1, Abel Antoine Missihoun2, Espérance Fifamè Elvire Kougnimon1, Carina Perside Afiavi Alofa1, Dias-Mendel Tenor Allode3, Akadiri Yessoufou4, Clément Agbangla2 and Casimir Dewanou Akpovi1,

1Research Unit on Non-Communicable Diseases and Cancer (UR-MNTC), Applied Biology Research Laboratory (LARBA), Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01BP 2009 Cotonou, Benin

2Laboratory of Molecular Genetics and Genome Analysis (LGMAG), Faculty of Sciences and Techniques, University of Abomey-Calavi, 01 BP 526 Cotonou, Benin

3Laboratory of Biochemistry and Molecular Microbiology, Higher Normal School of Natitingou, National University of Sciences, Technologies, Engineering, and Mathematics of Abomey, BP 72 Natitingou, Benin

4Laboratory of Cell Biology and Physiology, Institute of Applied Biomedical Sciences (ISBA) and Faculty of Sciences and Techniques, University of Abomey-Calavi, 01 BP 526 Cotonou, Benin

Pub. Date: February 04, 2024

Cite this paper:
Akodji Dèfognon Fiacre Marcos Migan, Augustin Gaétan Julien Sègbo, Edgard-Roméo Tchéoubi, Abel Antoine Missihoun, Espérance Fifamè Elvire Kougnimon, Carina Perside Afiavi Alofa, Dias-Mendel Tenor Allode, Akadiri Yessoufou, Clément Agbangla and Casimir Dewanou Akpovi. Predictive Potential of the Triglycerides-Glucose Index for Type 2 Diabetes in Benin: A Descriptive Cross-Sectional Study. American Journal of Biomedical Research. 2024; 12(1):1-10. doi: 10.12691/ajbr-12-1-1

Abstract

This study investigates the Triglycerides-Glucose (TyG) index's predictive potential for type 2 diabetes (T2D) in the Beninese population. Among 850 participants, including 327 with T2D, 25 with prediabetes, and 491 without diabetes, various risk factors were assessed. Anthropometric data, fasting blood glucose, cholesterol levels, and insulin were measured, and indices (HOMA1, HOMA2, TyG) were calculated. Statistical analyses utilized SigmaPlot 14, employing parametric and non-parametric tests based on data distribution. Data were presented as mean ± SD for quantitative, and proportions for qualitative variables. Normality was checked via the Shapiro-Wilk test. Parametric (ANOVA, t-test) and non-parametric (Kruskal-Wallis, Mann-Whitney) tests were employed based on data distribution. Pearson's chi-square test compared proportions, and associations were evaluated with odds ratios (OR). ROC curves assessed diagnostic performance (p<0.05). Results revealed a strong association between insulin resistance (IR) and T2D, with significant correlations to body mass index, waist circumference, blood glucose, cholesterol levels, and triglycerides. The TyG index correlated significantly with HOMA1-IR and HOMA2-IR. Elevated TyG index levels were observed in subjects with prediabetes, T2D, visceral obesity, age ≥ 45 years, family history of diabetes, and hypertension. The TyG index demonstrated good diagnostic performance, with an area under the curve of 0.82, outperforming other ratios. The TyG index emerged as a reliable marker for IR, exhibiting strong correlations with established HOMA models. It proved efficient, particularly in subjects with fasting blood glucose levels below 1 g/L, suggesting its potential as a predictive tool for T2D in the Beninese population.

Keywords:
TyG index insulin resistance HOMA diabetes prediction Benin

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Organisation Mondiale de la Santé. Rapport sur le diabète. Genève; 2016. 88 p.
 
[2]  International Diabetes Federation. The global picture. In: IDF Diabetes Atlas. 10th ed. Brussels: IDF; 2021. p. 30–63.
 
[3]  International Diabetes Federation. Diabetes by region. In: IDF Diabetes Atlas 10th edition. 10th ed. Brussels: IDF; 2021. p. 72–101.
 
[4]  Organisation Mondiale de la Santé. Profils des pays pour le diabète. 1st ed. 2016; Available from: http://www.who.int/diabetes/country-profiles/ben_fr.pdf
 
[5]  International Diabetes Federation. What is diabetes? In: IDF Diabetes Atlas. 10th ed. Brussels: IDF; 2021. p. 10–9.
 
[6]  Wu Y, Ding Y, Tanaka Y, Zhang W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int J Med Sci. 2014;11[11]: 1185–200.
 
[7]  Punthakee Z, Goldenberg R, Katz P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Canadian Journal of Diabetes. 2018; 42:S10–5.
 
[8]  Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21[12]: 2191–2.
 
[9]  Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27[6]: 1487–95.
 
[10]  Chamroonkiadtikun P, Ananchaisarp T, Wanichanon W. The triglyceride-glucose index, a predictor of type 2 diabetes development: A retrospective cohort study. Primary Care Diabetes. 2020;14[2]: 161–7.
 
[11]  Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The Product of Fasting Glucose and Triglycerides As Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders. 2008;6[4]: 299–304.
 
[12]  Zhang Y, Ding X, Hua B, Liu Q, Gao H, Chen H, et al. Predictive effect of triglyceride‑glucose index on clinical events in patients with type 2 diabetes mellitus and acute myocardial infarction: results from an observational cohort study in China. Cardiovascular Diabetology. 2021 Feb 11; 20[1]: 43.
 
[13]  Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, et al. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism. 2010; 95[7]: 3347–51.
 
[14]  Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med. 1990; 113[12]: 909–15.
 
[15]  DeFronzo RA. From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes. 2009; 58[4]: 773–95.
 
[16]  Lee DY, Lee ES, Kim JH, Park SE, Park CY, Oh KW, et al. Predictive Value of Triglyceride Glucose Index for the Risk of Incident Diabetes: A 4-Year Retrospective Longitudinal Study. PLoS One. 2016; 11[9]: e0163465.
 
[17]  Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018; 17: 122.
 
[18]  Campos Muñiz C, León-García PE, Serrato Diaz A, Hernández-Pérez E. Diabetes mellitus prediction based on the triglyceride and glucose index. Med Clin (Barc). 2023; 160[6]: 231–6.
 
[19]  Navarro-González D, Sánchez-Íñigo L, Pastrana-Delgado J, Fernández-Montero A, Martinez JA. Triglyceride–glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort. Preventive Medicine. 2016; 86: 99–105.
 
[20]  Zheng S, Shi S, Ren X, Han T, Li Y, Chen Y, et al. Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: cross-sectional and prospective cohort study. Journal of Translational Medicine. 2016; 14[1]: 260.
 
[21]  da Silva A, Caldas APS, Rocha DMUP, Bressan J. Triglyceride-glucose index predicts independently type 2 diabetes mellitus risk: A systematic review and meta-analysis of cohort studies. Primary Care Diabetes. 2020; 14[6]: 584–93.
 
[22]  Park HM, Lee HS, Lee YJ, Lee JH. The triglyceride–glucose index is a more powerful surrogate marker for predicting the prevalence and incidence of type 2 diabetes mellitus than the homeostatic model assessment of insulin resistance. Diabetes Research and Clinical Practice. 2021; 180: 109042.
 
[23]  Yoon JS, Lee HJ, Jeong HR, Shim YS, Kang MJ, Hwang IT. Triglyceride glucose index is superior biomarker for predicting type 2 diabetes mellitus in children and adolescents. Endocr J. 2022; 69[5]: 559–65.
 
[24]  Dagnelie P. Statistique théorique et appliquée. Statistique descriptive et bases de l’inférence statistique, tome 1. Paris: De Boeck; 1998. 508 p.
 
[25]  The oxford Center for Diabetes, Endocrinology, and Metabolism DTU. HOMA2 Calculator [Internet]. [cited 2023 Jan 20]. Available from: https://www.dtu.ox.ac.uk/homacalculator/
 
[26]  Placzkowska S, Pawlik−Sobecka L, Kokot I, Piwowar A. Indirect insulin resistance detection: Current clinical trends and laboratory limitations. Biomed Pap Med. 2019; 163: 187−199.
 
[27]  Simental−Mendía LE, Rodríguez−Morán M, Guerrero−Romero F. The Product of Fasting Glucose and Triglycerides As Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Relat Disord. 2008; 6: 299−304.
 
[28]  International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels: IDF; 2021. 141 p. Available from: www.diabetesatlas.org.
 
[29]  Basu R, Breda E, Oberg AL, Powell CC, Dalla Man C, Basu A, et al. Mechanisms of the Age-Associated Deterioration in Glucose Tolerance: Contribution of Alterations in Insulin Secretion, Action, and Clearance. Diabetes. 2003; 52[7]: 1738–48.
 
[30]  Sossa C, Agueh V, Saizonou J, Moussiliou PN, Kpozehouen A, Makoutode M, et al. Prédiction de l’insulino-résistance par les ratios de lipoprotéines chez les adultes béninois. International Journal of Biological and Chemical Sciences. 2015; 9[3]: 1319–29.
 
[31]  Lee SH, Park SY, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J. 2022; 46[1]: 15–37.
 
[32]  Aman M, Resnawita D, Rasyid H, Kasim H, Bakri S, Umar H, et al. The concordance of triglyceride glucose index (TyG index) and homeostatic model assessment for insulin resistance (Homa-IR) in non-diabetic subjects of adult Indonesian males. Clinical Epidemiology and Global Health. 2021; 9: 227–30.
 
[33]  Selvi NMK, Nandhini S, Sakthivadivel V, Lokesh S, Srinivasan AR, Sumathi S. Association of Triglyceride-Glucose Index (TyG index) with HbA1c and Insulin Resistance in Type 2 Diabetes Mellitus. Maedica (Bucur). 2021; 16[3]: 375–81.
 
[34]  Geloneze B, Vasques ACJ, Stabe CFC, Pareja JC, Rosado LEFP de L, Queiroz EC de, et al. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metab. 2009 Mar; 53: 281–7.