American Journal of Biomedical Research
ISSN (Print): 2328-3947 ISSN (Online): 2328-3955 Website: http://www.sciepub.com/journal/ajbr Editor-in-chief: Hari K. Koul
Open Access
Journal Browser
Go
American Journal of Biomedical Research. 2023, 11(1), 7-13
DOI: 10.12691/ajbr-11-1-2
Open AccessArticle

Implementation of in-house Methods for Isolating Fungal DNA of Clinical Samples

David Koffi1, , Yayé Yapi Guillaume2, Francis K. Kouadjo1, 2, Koui S Tossea1, Andre O. Toure1 and Allico J Djaman2

1Parasitology and Mycology Department, Institut Pasteur, Abidjan, Côte d’Ivoire

2Agrovalorisation Laboratory, University Jean Lorougnon Guédé, Daloa, Cote d’Ivoire

Pub. Date: March 01, 2023

Cite this paper:
David Koffi, Yayé Yapi Guillaume, Francis K. Kouadjo, Koui S Tossea, Andre O. Toure and Allico J Djaman. Implementation of in-house Methods for Isolating Fungal DNA of Clinical Samples. American Journal of Biomedical Research. 2023; 11(1):7-13. doi: 10.12691/ajbr-11-1-2

Abstract

Over 200 species of fungi are responsible for a variety of infections that can occur in various parts of the human body. There are several phenotypic methods for identifying these fungal elements; however, these approaches have limitations. Molecular methods are now routinely used in well-equipped mycology laboratories. However, the first step in isolating genetic material can often be costly, can suffer from external DNA contamination and some components have toxicity for personnel. The general objective of this work was to identify the best local method for isolating genetic material from fungi based on cost, yield and time-consuming criteria. A total of ten (10) different nucleic acid isolation methods were tested. Those tests using thermal or mechanical shock for cell lysis delivered better quality than those using chemical lysis. Thus, based on our criteria, the best methods for nucleic acid isolation and purification of fungal elements were cetyltrimethylammonium bromide (CTAB) combined with sterilized sea sand (less expensive) and the chelator Chelex® coupled with glass beads (faster).

Keywords:
thermal shock mechanical shock fungal species DNA extraction

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Guillot, J., & and Dannaoui E., La résistance aux antifongiques: importance en médecine humaine et vétérinaire. Bulletin de l’Académie Vétérinaire de France, 2016.
 
[2]  Cassagne, C., Normand, A. C., L’Ollivier, C., Ranque, S., and Piarroux, R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses, 2016. 59(11): p. 678-690.
 
[3]  Vingataramin, L., Dépistage des infections du tractus urinaire par méthode moléculaire. Http://Www.Editorialmanager.Com/Bt/ViewLetter.Asp?Id=325033&1sid={E8... 2014-12-15, 125p., 2014.
 
[4]  Garnaud, C., & and Cornet M., Membrane et paroi fongiques: des rôles clés dans la résistance aux antifongiques. Revue Francophone Des Laboratoires, 2020. 519: p. 50–58.
 
[5]  Paterson, A.H., Brubaker C.L., &, and Wendel J.F., A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter, 1993. 11(2): p. 122-127.
 
[6]  Susanna, H., Kenneth P.R. and Halyna F., Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnology, 2004. 4(1): p. 1-6.
 
[7]  Cheng, H.R. and Jiang N., Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett, 2006. 28(1): p. 55-9.
 
[8]  Chavasco, J. K., Paula, C. R., Hirata, M. H., Aleva, N. A., De Melo, C. E., Gambale, W., Ruiz, L. D. S., and Franco, M. C. Molecular identification of Candida dubliniensis isolated from oral lesions of HIV-positive and HIV-negative patients in Sao Paulo, Brazil. Rev Inst Med Trop Sao Paulo, 2006. 48(1): p. 21-6.
 
[9]  Borman, A. M., Linton, C. J., Miles, S. J. and Johnson, E. M. Molecular identification of pathogenic fungi. J Antimicrob Chemother, 2008. 61 Suppl 1: p. i7-12.
 
[10]  Jin, J., Lee Y.K., and Wickes B.L., Simple chemical extraction method for DNA isolation from Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol, 2004. 42(9): p. 4293-6.
 
[11]  Hotzel, H., Müller W., and Sachse K., Recovery and characterization of residual DNA from beer as a prerequisite for the detection of genetically modified ingredients. European Food Research and Technology, 1999. 209(3-4): p. 192-196.
 
[12]  Galán, A., Veses, V., Murgui, A., Casanova, M. and Martínez, J. P. Rapid PCR-based test for identifying Candida albicans by using primers derived from the pH-regulated KER1 gene. FEMS Yeast Res, 2006. 6(7): p. 1094-100.
 
[13]  Yamada, Y., Makimura, K., Merhendi, H., Ueda, K., Nishiyama, Y., Yamaguchi, H. and Osumi, M. Comparison of different methods for extraction of mitochondrial DNA from human pathogenic yeasts. Jpn J Infect Dis, 2002. 55(4): p. 122-5.
 
[14]  Kanshin, E., Kubiniok, P., Thattikota, Y., D’Amours, D., and Thibault, P. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress. Mol Syst Biol, 2015. 11(6): p. 813.
 
[15]  Avolio, M., Diamante, P., Modolo, M. L., De Rosa, R., Stano, P. and Camporese, A. Direct molecular detection of pathogens in blood as specific rule-In diagnostic biomarker in patients with presumed sepsis: Our experience on a heterogeneous cohort of patients with signs of infective systemic inflammatory response syndrome. Shock, 2014. 42(2): p. 86-92.
 
[16]  Rozales, F. P., Machado, A. B. M. P., De Paris, F., Zavascki, A. P. and Barth, A. L. PCR to detect Mycobacterium tuberculosis in respiratory tract samples: evaluation of clinical data. Epidemiol Infect, 2014. 142(7): p. 1517-23.
 
[17]  Tachikawa, R., Tomii, K., Seo, R., Nagata, K., Otsuka, K., Nakagawa, A., Otsuka, K., Hashimoto, H., Watanabe, K. and Shimizu, N. Detection of herpes viruses by multiplex and real-time polymerase chain reaction in bronchoalveolar lavage fluid of patients with acute lung injury or acute respiratory distress syndrome. Respiration, 2014. 87(4): p. 279-86.
 
[18]  El-Kirat, C.S., Développement d’ outils cellulaires et moléculaires pour l’ étude des interactions Candida – phagocytes; Application à la caractérisation du gène OLE2 codant une désaturase chez C. lusitaniae. Thèse de Doctorat En Microbiologie à l’université Bordaux 2, France., 2010.
 
[19]  Abdel-Latif, A. and Osman G., Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods, 2017. 13: p. 1.
 
[20]  Lee, M., Williams, L. E., Warnock, D. W. and Arthington-skaggs, B. A. Drug resistance genes and trailing growth in Candida albicans isolates. J Antimicrob Chemother, 2004. 53(2): p. 217-24.
 
[21]  Dilhari, A., Sampath, A., Gunasekara, C., Fernando, N., Weerasekara, D., Sissons, C., McBain, A. and Weerasekera, M. Evaluation of the impact of six different DNA extraction methods for the representation of the microbial community associated with human chronic wound infections using a gel-based DNA profiling method. AMB Express, 2017. 7(1): p. 179.