Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: https://www.sciepub.com/journal/aees Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Go
Applied Ecology and Environmental Sciences. 2016, 4(2), 48-52
DOI: 10.12691/aees-4-2-3
Open AccessArticle

Prediction of Ozone Concentrations According the Box-Jenkins Methodology for Assekrem Area

Hicham Beldjillali1, , Nacef Lamri2 and Nour El Islam Bachari2

1Department of Applied Statistics, Ecole Nationale des Statistiques et Economie Appliquée. 11, chemin Doudou Mokhtar Benaknoun-Alger

2Department of Ecology and Environment, Faculty of Biological Sciences, University of Science and Technology, Houari Boumedienne, USTHB, BP 32 El Alia, Bab Ezzouar Algiers

Pub. Date: May 16, 2016

Cite this paper:
Hicham Beldjillali, Nacef Lamri and Nour El Islam Bachari. Prediction of Ozone Concentrations According the Box-Jenkins Methodology for Assekrem Area. Applied Ecology and Environmental Sciences. 2016; 4(2):48-52. doi: 10.12691/aees-4-2-3

Abstract

The Box-Jenkins approach has been used to construct the forecast model of surface ozone (O3) concentrations. This forecast is important for monitoring O3 concentrations at a regional scale as well as at local level. We used the monthly average O3 concentrations covering the period going from January 2003 to December 2011. The accuracy of the models has been carried out with predicting and analyzing the average monthly O3 concentrations for 2012. By comparing the measured O3 concentrations values and the forecasted values, the AR(1) model is satisfactorily predicts monthly average O3 concentrations in the Assekrem area and the predictions of this model are loosely consistent with the measured values. The developed model can be used to forecast atmospheric tropospheric ozone concentrations in Assekrem area.

Keywords:
Ozone Assekrem (Tamanrasset) Box-Jenkins methodology Autoregressive models

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Henderson, G.S., McConnell, J.C., Templeton, E.M.J. & Evans, W.F.J. A numerical model for one‐dimensional simulation of stratospheric chemistry, Atmosphere-Ocean, 25:4, 427-459, 1987.
 
[2]  Sicard, P., Dalstein-Richier, L. & Vas, N. Annual and seasonal trends of ambient ozone concentration and its impact on forest vegetation in Mercantour National Park (South-eastern France) over the 2000 - 2008 period. Environmental Pollution 159, 351-362, 2011.
 
[3]  Zheng, J., Swall, J. L., Cox, W. M. & Davis, J. M. Interannual variation in meteorologically adjusted ozone levels in the eastern United States: A comparison of two approaches. Atmospheric Environment 41, 705-716, 2007.
 
[4]  Abdul-Wahab, S.A., Bakheit, C.S., & Al-Alawi, S.M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software 20, 1263-1271, 2005.
 
[5]  Tarasick, D.W. & Slater, R. Ozone in the troposphere: Measurements, climatology, budget, and trends, Atmosphere-Ocean, 46:1, 93-115, 2008.
 
[6]  Malek, A., Drif, M., Chouder, A., & Chikh, M. Alimentation électrique par une installation photovoltaïque destinée pour des équipements de la Veille de l'Atmosphère Globale (Station de Recherche de l'Assekrem - Tamanrasset), Bulletin des énergies renouvelables - N° 2, 2002.
 
[7]  Chaloulakou, A., Saisana, M. & Spyrellis, N. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. The Science of the Total Environment 313, 1-13, 2003.
 
[8]  Heo, J.S. & Kim, D.S. A new method of ozone forecasting using fuzzy expert and neural network systems. Science of the Total Environment 325 221-237, 2004.
 
[9]  Lengyel, A., Héberger, K., Paksy, L., Bánhidi, O. & Rajkó, R. Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere 57, 889-896, 2004.
 
[10]  Jasim M., Rajab, M.Z. & MatJafri, H.S. Lim, Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia, Atmospheric Environment 71, 36-43, 2013.
 
[11]  Zellweger, C., Klausen, J. & Buchmann B. System and Performance Audit for Surface Ozone, Global GAW Station Tamanrasset / Assekrem, Algeria, WCC-Empa Report 03/1, 26 pp, Empa Dübendorf, Switzerland, 2003.
 
[12]  Adejumo, A. O., & Momo, A. A. Modeling Box-Jenkins Methodology on Retail Prices of Rice in Nigeria. The International Journal of Engineering and Science (IJES), 2(9), 75-83, 2013.
 
[13]  Sharma, P., Chandra, A., & Kaushik, S. Forecasts using Box–Jenkins models for the ambient air quality data of Delhi City. Environmental monitoring and assessment, 157(1), 105-112, 2009.
 
[14]  Dobre, I. & Alexandru A. A. Modelling unemployment rate using Box-Jenkins procedure. Journal of Applied Quantitative Methods, 3(2), 156-166, 2008.
 
[15]  Etuk, E. H. Predicting inflation rates of Nigeria using a seasonal Box-Jenkins model. Journal of Statistical and Econometric Methods, 1(3), 27-37, 2012.