[1] | B. Rimal, L. Zhang, D. Fu, R. Kunwar, and Y. Zhai, “Monitoring Urban Growth and the Nepal Earthquake 2015 for Sustainability of Kathmandu Valley, Nepal,” Land, vol. 6, no. 2, p. 42, Jun. 2017. |
|
[2] | R. B. Thapa and Y. Murayama, “Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process,” Appl. Geogr., vol. 30, no. 1, pp. 70–83, Jan. 2010. |
|
[3] | S. Bakrania, “Urban poverty in Nepal (GSDRC Helpdesk Research Report 1322),” 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:131599397. |
|
[4] | B. Rimal, S. Sloan, H. Keshtkar, R. Sharma, S. Rijal, and U. B. Shrestha, “Patterns of Historical and Future Urban Expansion in Nepal,” Remote Sens., vol. 12, no. 4, p. 628, Feb. 2020. |
|
[5] | J. Li, Xi. Wang, W. Ma, and H. Zhang, “Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area,China,” Ecol. Complex., vol. 6, pp. 413–420, [Online]. Available: https:// api.semanticscholar.org/ CorpusID: 84670643. |
|
[6] | C. Gao, X. Jiang, H. Wu, B.-H. Tang, Z. Li, and Z.-L. Li, “Comparison of land surface temperatures from MSG-2/SEVIRI and Terra/MODIS,” J. Appl. Remote Sens., vol. 6, 2012, [Online]. Available: https://api.semanticscholar.org/CorpusID: 122826911. |
|
[7] | P. Dash, F.-M. Göttsche, F. S. Olesen, and H. Fischer, “Retrieval of land surface temperature and emissivity from satellite data: Physics, theoretical limitations and current methods,” J. Indian Soc. Remote Sens., vol. 29, pp. 23–30, 2001, [Online]. Available: https://api.semanticscholar.org/CorpusID:121249262. |
|
[8] | H. Huang et al., “Scale and Attenuation of Water Bodies on Urban Heat Islands,” Open House Int., vol. 42, no. 3, pp. 108–111, Jan. 2017. |
|
[9] | B. (Contractor) A. Smies, “Landsat 8-9 Operational Land Imager (OLI) - Thermal Infrared Sensor (TIRS) Collection 2 Level 1 (L1) Data Format Control Book (DFCB)”. |
|
[10] | E. Windle, Hayley Evers-King, Benjamin R. Loveday, Michael Ondrusek, and Greg M. Silsbe, “Evaluating Atmospheric Correction Algorithms Applied to OLCI Sentinel-3 Data of Chesapeake Bay Waters”. |
|
[11] | W. Ullah et al., “Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region,” Heliyon, vol. 9, no. 2, p. e13322, Feb. 2023. |
|
[12] | “Landsat Surface Temperature (ST) Product Guide,” no. Version 2.0, [Online]. Available: https://d9-wret.s3.us-west-2.amazonaws.com/ assets/palladium/production/s3fs-public/ atoms/ files/LSDS-1330-LandsatSurfaceTemperature _ ProductGuide-v2.pdf. |
|
[13] | “Landsat 8-9 Operational Land Imager (OLI) - Thermal Infrared Sensor (TIRS) Collection 2 Level 1 (L1) Data Format Control Book (DFCB).” [Online]. Available: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/ atoms/ files/.LSDS-1822_ Landsat8-9-OLI-TIRS-C2-L1-DFCB-v6.pdf. |
|
[14] | Operational Land Imager (OLI) - Thermal Infrared Sensor (TIRS) Collection 2 (C2) Level 2 (L2) Data Format Control Book (DFCB), vol. 7. U.S. Geographical Survey, 2022. |
|
[15] | USSG, “earthexplorer.usgs.gov.” [Online]. Available: https://earthexplorer.usgs.gov/. |
|
[16] | G. Chander, B. L. Markham, and D. L. Helder, “Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors,” Remote Sens. Environ., vol. 113, no. 5, pp. 893–903, 2009. |
|
[17] | C. P. Lo, J. C. Luvall, and D. A. Quattrochi, “Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect,” Int. J. Remote Sens., vol. 18, no. 2, pp. 287–304, 1997. |
|
[18] | Y. Liu, W. Song, and X. Deng, “Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators,” Ecol. Indic., vol. 96, pp. 23–37, 2018. |
|
[19] | J. A. Sobrino et al., “Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 2, pp. 316–327, 2008. |
|
[20] | Jeevalakshmi and B. Manikiam, “Land Surface Temperature Retrieval from LANDSAT data using Emissivity Estimation,” 2017. [Online]. Available: https:// api.semanticscholar.org/ CorpusID: 40033815. |
|
[21] | Z. Cai, G. Han, and M. Chen, “Do water bodies play an important role in the relationship between urban form and land surface temperature?,” Sustain. Cities Soc., vol. 39, pp. 487–498, May 2018. |
|
[22] | Z. Wu and Y. Zhang, “Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect,” Sustainability, 2019, [Online]. Available: https://api.semanticscholar.org/CorpusID:159125825. |
|
[23] | S. Zhou et al., “Temporal and Spatial Variation of Land Surface Temperature and Its Driving Factors in Zhengzhou City in China from 2005 to 2020,” Remote Sens., vol. 14, no. 17, p. 4281, Aug. 2022. |
|