Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: https://www.sciepub.com/journal/aees Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Go
Applied Ecology and Environmental Sciences. 2024, 12(2), 7-17
DOI: 10.12691/aees-12-2-1
Open AccessArticle

A Comparative Hepatotoxic and Genotoxic Effect of An Antifouling Agent on Three Catfish Clarias gariepinus, Clarias batrachus and Heteropneustes fossilis

Arti Kumari Ram1, Sruti Banerjee1, Saurabh Chakraborti1, Sarmistha Banik2 and Ranajit Karmakar1,

1Postgraduate. Department of Zoology, Bidhannagar College, Government of West Bengal, Salt Lake, Kolkata, India

2Department of Zoology, Chandernagore College, Government of West Bengal, Chandernagore, Hooghly, West Bengal, India.

Pub. Date: July 15, 2024

Cite this paper:
Arti Kumari Ram, Sruti Banerjee, Saurabh Chakraborti, Sarmistha Banik and Ranajit Karmakar. A Comparative Hepatotoxic and Genotoxic Effect of An Antifouling Agent on Three Catfish Clarias gariepinus, Clarias batrachus and Heteropneustes fossilis. Applied Ecology and Environmental Sciences. 2024; 12(2):7-17. doi: 10.12691/aees-12-2-1

Abstract

A single exposure to a less explored antifouling paint caused noticeable and detectable hepatopathologic and genotoxic effects in three species of catfish. Among the three catfish, one is exotic, Clarias gariepinus, and the other two are Indian species, Clarias batrachus and Heteropneustes fossilis. Antifouling paint (Power Excel Hi-Gloss Synthetic Enamel Paint, trade name Black Japan)-induced pathological changes were recorded in hepatic histology and histochemistry along with micronucleus tests in erythrocytes following 96 hours of a single exposure of 0.1% concentration. The detrimental changes included infiltrations of inflammatory cells, increased pyknotic nuclei, cytoplasmic vacuolation, dilation of blood vessels, melanomacrophage aggregation, hepatic necrosis, apoptotic cell, rupture of the cell wall of the central vein, haemorrhages, etc. in the hepatic tissue. A significant depletion in the hepatic PAS-positive components and DNA content in the treated groups was also noted. The adverse effects involved erythrocytic cellular and nuclear abnormalities. Results of the haematological assays indicated a significantly higher (P<0.001) level of micronucleus frequency in H. fossilis compared to its control counterpart, and also compared to the other two experimental catfish species. From our study, it could be commented that an almost unexplored antifouling paint contained potentially toxic components that caused a hazardous effect on the Indian catfish, especially on H. fossilis because the particular fish species found to be highly sensitive to our antifouling paint concerning the haematological and histopathological observations. In this context, we can state that H. fossilis could be used as a tool for screening the histopathological and genotoxic effects of antifouling paint.

Keywords:
Antifouling paint Clarias gariepinus Clarias batrachus Heteropneutes fossilis Hepatotoxicity Micronucleus PAS reaction DNA content

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Rittschof, D., 2000. Natural products antifoulants: One perspective on the challenges related to coatings development. Biofouling, 15. 119 - 127. 2000.
 
[2]  Amstrong, E., Boyd, K. G. and Burgess, J. G. Prevention of marine biofouling using natural compounds from marine organisms. Biotechnology Annual Review, 6. 221- 241. 2000.
 
[3]  Karlssson, J. and Eklund, B. New-biocide free anti-fouling paints are toxic. Marine Pollution Bulletin, 49. 456 – 464. 2004.
 
[4]  George, O. O., Amaeze, N H., Babatunde, E. and Otitolojum A. A. Genotoxic, histopathological and oxidative stress responses in catfish, Clarias gariepinus, exposed to two antifouling paints. Journal of Health and Pollution, 7. 71 - 82. 2017
 
[5]  Espin, S., Martinez-Lopez, E., Jimenez, P., Maria-Mojica, P. and Garcia-Fernandez, A. J. Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus). Envronmental Research, 59 - 68. 2014.
 
[6]  Ghais, S. A., Bhardwaj, V. and Kumbhar, P. Sub lethal effect of antifouling paints on marine organism. International Journal of Fisheries and Aquatic Studies, 8. 92 - 97. 2020.
 
[7]  Nacira, D. and Saida, M. Solvent toxicity: Hematotoxicity, hepatotoxicity and nephrotoxicity in rabbits (Oryctolagus cuniculus) after short term exposure to solvent (EGMF). Annals of Clinical and Analytical Medicine, 12. 537 – 541. 2021.
 
[8]  Katranitsas, A., Castrisi-Catharios, J. and Persoone, G. The effects of copper-based antifouling paint on mortality and enzyme activity of a non-target marine organism. Marine Pollution Bulletin, 46. 1491 - 14944. 2003.
 
[9]  van Dyk, J. C, Pieterse, G. M. and van Vuren, J. H. Histological changes in the liver of Oreochromis mosamibicus (cichlidae) after exposure to cadmium and zinc. Ecotoxicology and Environment Safety, 66. 432 - 440. 2007.
 
[10]  Amaeze, N. H., Adeyemi, R. O. and Adebesin, A. O. Oxidative stress, heat shock protein and histopathological effect in the gill of African Catfish, Clarias gariepinus induced by bridge runoff. Environment Monitoring and Assessment, 187. 1-16. 2015.
 
[11]  Fernandes, C., Fontaínhas-Fernandes, A. Rocha, E. and Salgado, M. A. Monitoring pollution in Esmoriz-Paramos lagoon, Portugal: Liver histological and biochemical effects in Liza aliens. Environment Monitoring and Assessment, 145. 315 - 322. 2008.
 
[12]  Nielson, M. Silver nanoparticle induced heat shock protein 70, Oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied Pharmacology, 242. 263 - 269. 2009.
 
[13]  Hao, L., Wang, Z. and Xing, B. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). Journal Environmental Science, 21. 1459 - 1466. 2009.
 
[14]  Farkas, J., Christian, P., Urrea, J.A.G., Roos, N., Hassellöv, M., Knut Erik Tollefsen, K.E. and Kevin V. Thomas, K.V. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 96. 44 - 52. 2010.
 
[15]  Aguis, C. and Roberts R. J. Melano-macrophages centres and their role in fish pathology. Journal of Fish Disease, 26. 499- 509. 2003.
 
[16]  Viana, H.C., Jesus, W.B., Silva, S.K.L., Jorge, M.B., Santos, D.M.S. and Carvalho, R.N.F. Aggregation of hepatic melanomacrophage centers in S. herzbergii (Pisces, Ariidae) as indicators of environmental change and well-being. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 73. 868 – 876. 2021.
 
[17]  Al-Sabti, K., Metcalfe, C.D. Fish micronuclei for assessing genotoxicity in water. Mutation Research, 343. 121-135. 1985.
 
[18]  Heddle, J.A., Fenech, M., Hayashi, M., MacGregor, J.T. Reflections on the development of micronucleus assays. Mutagenesis, 26. 3-10. 2011.
 
[19]  Fenech, M. The in vitro micronucleus technique. Mutation Research, 455. 81-95. 2000.
 
[20]  Fenech, M. Cytokinesis-block micronucleus cytome assay. Nature Protocols, 2. 1084 - 1104. 2007.
 
[21]  Winter, M.J., Ellis, L.C., Hutchinson, T.H. Formation of micronuclei in erythrocytes of the fathead minnow (Pimephales promelas) after acute treatment with mitomycin C or cyclophosphamide. Mutation Research, 629. 89 - 99. 2007.
 
[22]  Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis, 26. 125 - 132. 2011.
 
[23]  Sadiqul, I.M., Ferdous, Z., Nannu, M.T.A., Mostakim, G.M., Rahman, M.K. Acute exposure to a quinalphos containing insecticide (convoy) causes genetic damage and nuclear changes in peripheral erythrocytes of silver barb, Barbonymus gonionotus. Environmental Pollution, 219. 949 - 956. 2016.
 
[24]  López González, E.C., Latorre, M.A., Larriera, A., Poletta, G. L. Induction of micronuclei in broad snouted caiman (Caiman latirostris) hatchlings exposed in vivo to Roundup (glyphosate) concentrations used in agriculture. Pesticide Biochemistry and Physiology, 105. 131- 134. 2013.
 
[25]  Odetti, L.M., Paravani, E.V., Simoniello, Ma. F. And Poletta, G.L. Micronucleus test in reptiles: Current and future perspectives. Mutation Research, 897. 503772. 2024
 
[26]  McManus, J. F. A. Histological demonstration of mucin after periodic acid. Nature, 158, 202. 1946.
 
[27]  Feulgen, R. and Rossenbeck, H. Mikroskopisch-chemischer nachweis einer nukleinsäuer vom typus der thymonukleinsäure und die- darauf beruhende elektive färbung von zellkeren in mikroskopischen präparaten [in German].Hoppe-Seylers Z Physiological Chemistry, 13: 203 – 248. 192
 
[28]  Agrawal, P., Chopra, D., Gupta, M. and Santgaurav . Toxicity of organic solvent in a young painter presenting as transient hepatitis: A Case Report. Indian J Occupational and Environmental Medicine, 24. 33 – 35. 2020.
 
[29]  Govindasamy, R. and Rahman, A. A. Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochoromis mossambicus). Journal of Environmental Science, 24. 1091-1098. 2012
 
[30]  Sayed, A.H., Abdel-Tawab, H. S., Abdel Hakeem, S.S. and Mekkawy I.A. The protective role of quince leaf extract against the adverse impact of ultraviolet-A radiation on some tissue of Clarias gariepinus (Burchell,1822). Journal of Photochemistry and Photobiology B, 119. 9 - 14. 2013.
 
[31]  Oliveira Ribeiro, C. A., Neto, F. F., Mela, M., Silva, P H., Randi, M. M., Rabitto, I. S., Alves Cota, J. R. M.,Pelletier, E. Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methyl mercury, inorganic lead, and tri-butyltin chloride. Environmental Research, 101. 74 – 80. 2006.
 
[32]  Mobarak, Y. M. S. and Sharaf, M. M. Lead acetate-induced histopathological changes in the gills and digestive system of silver sailfin molly (Poecilia latipinna). International Journal of Zoological Research, 7. 1 – 18. 2011.
 
[33]  Myers, M.S., Rhodes, L.D. and McCain, B.B. Pathological anatomy and patterns of occurrence of hepatic neoplasms, putative preneoplastic lesions, and other iodiopathic hepatic conditions English sole (Parophrys vetulus) from Puget sound, Washington. Journal of National Cancer Institute, 78. 333-363. 1987.
 
[34]  Khan, R.A. and Kicenuik, K. Effect of petroleum hydrocarbons monogencid parasitizing Atlantic cod, Gadus morhua. Bulletin of Environmental Contamination and Toxicology, 41. 91-100. 1983.
 
[35]  Wolf, J. C. and Wolfe, J. W. A brief review of nonneoplastic hepatic toxicity of fish. Toxicology and Pathology, 33. 75 - 83. 2005.
 
[36]  Fijan, N. Morphogenesis of blood cell lineages in channel catfish. Journal of Fish Biology, 60. 999 – 1014. 2002.
 
[37]  Passantino, L., Altamura, M., Cianciotta, A., Jirillo, F., Ribaud, M.R., Jirillo, E., and Passantino, G. F. Maturation of fish erythrocytes coincides with changes in their morphology, enhanced ability to interact with Candida albicans and release of cytokine-like factors active upon autologous macrophages. Immunopharmacology and Immunotoxicology, 26. 573 – 585. 2004.
 
[38]  Martins, B. O., Franco-Belussi, L., Siqueira, M.S., Fernandes, C.E.S., and Provete, D., The evolution of red blood cell shape in fishes. Journal of Evolutionary Biology, 34. 537-548. 2021.
 
[39]  Shahjahan, Md., Rahman, M. S., Islam, S. M. M, Uddin, M. H. and Al-Emran, Md. Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish Danio rerio. Environmental Science and Pollution Research, 26. 36903 - 36912. 2019.
 
[40]  Ritu, R. F., Islam, S. M., Rashid, H., Haque, S. M., Zulfahmi, I. and Sumon, K. A., Application of fenitrothion on Heteropneustes fossilis causes alteration in morphology of erythrocytes via modifying hematological parameters. Toxicology Reports, 9. 895 - 904. 2022.
 
[41]  Bai, M. M., Divya, K., Haseena, B. S. K, Sailaja, G., Sandhya, D. and Thyagaraju, K. Evaluation of genotoxic and lipid peroxidation effect of cadmium in developing chick embryos. Journal of Environmental and Analytical Toxicology, 4. 238. 2014.
 
[42]  Ghaffar, A., Riaz, H., Ahrar, K. And Abbas, R. Z., Haemato-biochemical and genetic damage caused by triazophos in freshwater fish, Labeo rohita. International Journal of Agricultural Biology, 17. 637 - 642. 2015a.
 
[43]  Singh, U. and Pandey, R. S. Fertilizer industry effluent induced hematological, histopathological and biochemical alterations in a stinging catfish, Hteropneustes fossilis (Bloch, 1794). Environmental and Sustainability Indicators, 10. 100110. 2021.
 
[44]  Cooke, M. S., Evans, M. D., Dizdaroglu, M. and Lunec, J. Oxidative DNA damage: Mechanisms, mutation and disease. FASEB Journal, 10. 1195 - 1214. 2017.
 
[45]  Khan, M. M., Moniruzzaman, M., Mostakim, G.M., Khan, M. S. R, Rahman, M. K. and Islam, M. S. Aberrations of the peripheral erythrocytes and its recovery patterns in a freshwater teleost, silver barb exposed to profenofos. Environmetal Pollution, 234. 830-837. 2018.
 
[46]  Hussain, R., Mahmood, F., Khan, A., Javed, M. T., Rehan, S. and Mehdi, T. Cellular and biochemical effects induced by atrazine on blood of male Japanese quail (Coturnix japonica). Pesticide Biochemistry and Physiology, 103. 38 - 42. 2012.
 
[47]  Ventura, B. C., Angelis, D. F. and Marin-Molares, M. A., Mutagenic and genotoxic effects of the atrazine herbicide in Oreochromis nilotics (Perciformes, Cichlidae) detected by the micronuclei test and the comet assay. Pesticide Biochemisty and Physiology, 90. 42 - 51. 2008.