Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: https://www.sciepub.com/journal/aees Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Go
Applied Ecology and Environmental Sciences. 2022, 10(3), 99-112
DOI: 10.12691/aees-10-3-5
Open AccessArticle

Detection of Plant Growth Promoting (PGP) Activity in Nickel Resistant Proteus mirabilis KT873815 Isolated from Dhapa Municipality Solid Waste Dumping Ground, Kolkata, India

Santanu Maitra1, 2, and Pranab Kumar Banerjee1, 2

1Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, India

2Vector Molecular Genetics Research Unit, Department of Zoology, Serampore College, Serampore, Hoogly-7112201, India

Pub. Date: March 11, 2022

Cite this paper:
Santanu Maitra and Pranab Kumar Banerjee. Detection of Plant Growth Promoting (PGP) Activity in Nickel Resistant Proteus mirabilis KT873815 Isolated from Dhapa Municipality Solid Waste Dumping Ground, Kolkata, India. Applied Ecology and Environmental Sciences. 2022; 10(3):99-112. doi: 10.12691/aees-10-3-5

Abstract

A bacterial isolate designated SM1 was isolated from Dhapa municipality solid waste dumping ground in Kolkata, India. It was found to be resistant to high levels of Nickel as well as other toxic metals. Upon ribotyping SM1 was found to be Proteus mirabilis with a Genbank accession number of KT873815. The isolate was seen to accumulate nickel in its cell cytoplasm as found out by TEM, EDXRS and XRD analysis. The isolate further produced Siderophore and Indole Acetic acid (IAA) and showed Plant Growth Promotion chracteristics when tested on Indian mustard (Brassica hirta) leading to significant decrease in the nickel amassing by plants when the mustard seeds were grown in nickel contaminated soil along with the isolate.

Keywords:
nickel resistant MTC Plant Growth Promoting Rhizobacteria (PGPR)

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Higham D.P., Sadler P.J., Scawen M.D., Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ Health Perspect 65: 5-11. 1986.
 
[2]  Wang C.L., Michels P.C., Dawson S.C., kitisakkul S., Baross J.A., Keasling J.D., Clark D.S., Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic cultutre. Appl Environ Microbiol 63: 4075-4078. 1997.
 
[3]  Sar P, Kazy S.K., Singh S.P., Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol 32: 257-261. 2001.
 
[4]  Kloepper J.W., Plant growth-promoting rhizobacteria (other systems). In: Okon Y.Y .(ed) Azospirillum/plant associations. Boca Raton, FL, USA: CRC Press, 1994, PP 111-118.
 
[5]  Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R, Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister D.L., Cregan P.B. (eds) The rhizosphere and plant growth. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991, pp 315-326.
 
[6]  Anderson T.A., Guthrie E.A., Walton B.T., Bioremediation in the rhizosphere. Environ Sci Technol 27: 2630-2636. 1993.
 
[7]  Yee D.C., Maynard J.A., Wood T.K., Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64: 112-118. 1998.
 
[8]  Shim H., Chauhan S., Ryoo D., Bowers K., Thomas S.M., Canada K.A., Burken J.G., Wood T.K., Rhizosphere competitiveness of trichloroethylene-degrading poplar-colonizing recombinant bacteria. Appl Environ Microbiol 66: 4673-4678. 2000.
 
[9]  Kamnev A.A., van der Lelie, Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20: 239-58. 2000
 
[10]  Burd G.I., Dixon G.D., Glick B.R., Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46: 237-245. 2000.
 
[11]  Mayak S., Tirosh T., Glick B.R., Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166: 525-530. 2004.
 
[12]  Kuiper I., Lagendijk E.L., Bloemberg G.V., Lugtenberg B.J.J., Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17: 6-15. 2004.
 
[13]  Burd G.I., Dixon D.G., Glick B.R., A plant growth-promoting bacterium that decreases nickel toxicity in plant seedlings. Appl Environ Microbiol 64: 3663-3668. 1998.
 
[14]  de Souza M.P., Chu D., Zhao M., Zayed A.M., Ruzin S.E., Schichnes D., Terry N., Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119: 565-573. 1999a.
 
[15]  de Souza M.P., Huang C.P., Chee N., Terry N., Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209: 259-263. 1999b.
 
[16]  Abou-Shanab R.A., Angle J.S., Delorme T.A., Chaney R.L., van Berkum P., Moawad H., Ghanem K., Ghozlan H.A., Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. N Phytol 158: 219-224. 2003.
 
[17]  Glick B.R., Penrose D.M., Li J.P., A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol. 190(1):63-68. 1998.
 
[18]  Ernst W.H.O., Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11: 163-167. 1996.
 
[19]  Gray C.W., McLaren R.G., Roberts A.H.C., Condron L.M., Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time. Aust J Soil Res 36: 199-216. 1998
 
[20]  Blake R.C., Choate D.M., Bardhan S., Revis N., Barton L.L., Zocco T.G., Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12: 1365-1376. 1993.
 
[21]  Park C.H., Keyhan M., Matin A., Purification and characterization of chromate reductase in Pseudomonas putida. Abs Gen Meet. American Soc Microbial 99: 536-548. 1999.
 
[22]  Abbas B.F., Khamis W.M., Abdullah A.M., Sha H., Environmental Pollution with the Heavy Metal Compound. Res. Journ. of Pharm. And Tech. 11(9)(0974-3618): 4035-4041. 2018.
 
[23]  Othman R., Latiff H.N.M., Baharuddin Z.M., Closed Landfill Heavy Metal Contamination Distribution Profiles At Different Soil Depths And Radiuses. App Econ Environ Res. 17(4): 8059-8067. 2019.
 
[24]  Samanta A., Bera P., Khatun M., Sinha C., Pal P., Lalee A. and Mandal A., An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. J. Microbiol. Biotech. Res., 2 (1): 178-189. 2012.
 
[25]  Ghosh A., Saha P.D., Bioremediation of Copper present in waste water using isolated Micro-organism Stenotrophomonas sp. PD2 from Soil of Dhapa, Kolkata, India. Elix. Poll. 47: 8921-8923. 2012.
 
[26]  Saha A.,Santra S.C., Isolation and characterization of bacteria isolated from municipal solid waste for production of industrial enzymes and waste degradation. J of Microbiol. And Exp. 2014; 1(1): 12‒19. 2014.
 
[27]  WEST BENGAL POLLUTION CONTROL BOARD. DHAPA DUMPSITE ENVIRONMENTAL AND SOCIAL ASSESSMENT REPORT. FEBRUARY. 2014.
 
[28]  Giovannoni S.J., The polymerase chain reaction. In: Stackebrandt E., Goodfellow M. (eds) Nucleic acid techniques in bacterial systematics. Chichester,UK: Wiley, 1991, pp 177-203.
 
[29]  Miller E.S., Woese C.R. and Brenner S., Description of the erythromycin producing bacterium Arthrobacter sp. NRRL Strain B-3381 as Aeromicrobium erythreum gen. nov.,sp. Nov. int. J of Syst Bacteriol. 41(3): 361-368. 1991.
 
[30]  Schwyn B., Neiland JB., Universal chemical assay for the detection of siderophores. Anal Biochem 160: 47-56. 1987.
 
[31]  Gordon S.A., Weber R.P., Colorimetric estimation of indoleacetic acid. Plant Physiol 26: 192-195. 1951.
 
[32]  Rangarajan A., Kelly J.F., Iron bioavailability from Amaranthus Species: In Vitro dialysable iron for estimation of genetic variation. J Sci Food Agric 78: 267-273. 1998.
 
[33]  Arnon D.I., Copper enzymes in isolated chloroplast. polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1-15. 1949.
 
[34]  Chen Y.H., Shen Z.G., Li X.D., The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19: 1553-1565. 2004.