Applied Ecology and Environmental Sciences
ISSN (Print): 2328-3912 ISSN (Online): 2328-3920 Website: https://www.sciepub.com/journal/aees Editor-in-chief: Alejandro González Medina
Open Access
Journal Browser
Go
Applied Ecology and Environmental Sciences. 2021, 9(7), 695-703
DOI: 10.12691/aees-9-7-8
Open AccessReview Article

Review on Efficacy of Microbial Degradation of Polyethylene Terephthalate and Bio-upcycling as a Part of Plastic Waste Management

Menaka Devi Salam1, , Ajit Varma1, Rishabh Prashar1 and Divya Choudhary1

1Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India

Pub. Date: July 29, 2021

Cite this paper:
Menaka Devi Salam, Ajit Varma, Rishabh Prashar and Divya Choudhary. Review on Efficacy of Microbial Degradation of Polyethylene Terephthalate and Bio-upcycling as a Part of Plastic Waste Management. Applied Ecology and Environmental Sciences. 2021; 9(7):695-703. doi: 10.12691/aees-9-7-8

Abstract

Poly (ethylene terephthalate) (PET) is a very common and excessively used plastic polymer. The accumulation of PET waste in the environment has led to increasing global concerns because of the extremely low degradation properties of this polymer. Only a few ways have been identified to biologically degrade PET. Although none of these methods has been brought into use industrially, but the evolution of microbes leading to abilities to degrade certain polymers is quite promising and gives us the opportunity to identify and utilize these properties to solve the long time existing problem of plastic waste. Different types of PET hydrolases have been isolated from fungi as well as bacteria and some of them have shown remarkable degradation of crystalline PET with upto 50% weight loss and in about two to three weeks time. Some of the PET hydrolases have been characterized to be stable at high temperatures of 50 to 70°C which is an advantage for industrial application as efficient degraders of PET. This review article gives a brief overview on the various methods of PET degradation and focuses mainly on the microbes which have been identified to be capable of degrading PET. The enzyme involved in degradation for each microorganism is being explored in order to get a better understanding of the degradation mechanism. In addition, current status of bio-upcycling of PET is being discussed which is an alternative way of managing the ever increasing build of plastic waste.

Keywords:
PET hydrolases MHET hydrolases polymers monomers depolymerization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  MacArthur Foundation and World Economic Forum, 2014; Available: http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf.
 
[2]  Tsai, Y., Fan, C.H., Hung, C.Y. and Tsai, F.J, “Poly (ethylene terephthalate) copolymers that contain 5-tert-butylisophthalic acid and 1-3/1-4-cyclohexanedimethanol: Synthesis, characterization, and properties”, J. Appl. Polym. Sci, 104(1). 279-285. 2007.
 
[3]  Glendening, L.H. and Scuilla, V.J.Osprey Biotechnics Inc, 2001. Method for waste degradation. U.S. Patent 6,245,552.
 
[4]  Lapshin, R.V., Alekhin, A.P., Kirilenko, A.G., Odintsov, S.L. and Krotkov, V.A. (2010). Vacuum ultraviolet smoothing of nanometer-scale asperities of Poly (methyl methacrylate) surface. J. Surf. Invest-X-ray +, 4(1), 1-11.
 
[5]  Olayan, H.B., Hami, H.S. and Owen, E.D. (1996). Photochemical and thermal crosslinking of polymers. J. Macromol. Sci. Polymer Rev., 36(4), 671-719.
 
[6]  Shah, A. A., Hasan, F., Hameed, A. and Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnol. Adv., 26 (3), 246-265.
 
[7]  Bartolome, L., Imran, M., Cho, B.G., Al-Masry, W.A. and Kim, D.H. (2012). Recent Developments in the Chemical Recycling of PET. In D. S. Achilias (Ed.), Material Recycling - Trends and Perspectives. United Kingdom: IntechOpen.
 
[8]  Xanthos, M. and Patel, S.H. (1998). Solvolysis. (In G. Akovali, C.A. Bernardo, J. Leidner, L.A. Utracki & M. Xanthos (Eds.), Frontiers in the Science and Technology of Polymer Recycling. Vol. 351 (pp. 425-436). NATO ASI Series (Series E: Applied Sciences), Springer: Dordrecht.)
 
[9]  McKeen, L.W. (2013). Introduction to the Weathering of Plastics. (In W. Andrew (Ed), The Effect of UV Light and Weather on Plastics and Elastomers. 3rd ed. (pp. 17-41). Elsevier: Amsterdam, The Netherlands).
 
[10]  Beachell, H.C. and Nemphos, S.P. (1959). Oxidative Degradation of Polymers in Presence of Ozone. (In Ozone chemistry and Technology Vol. 21 (pp. 168-175). American Chemical Society: Washington DC).
 
[11]  Gu, J.D., Ford, T.E., Mitton, D.B. and Mitchell, R. (2000). Microbial corrosion of metals. (In Revie W (Ed), The Uhlig Corrosion Handbook 2nd Edition. (pp. 915-927). Wiley: New York).
 
[12]  Tokiwa, Y., Calabia, B.P., Ugwu, C.U. and Aiba, S. (2009). Biodegradability of Plastics. Int. J. Mol. Sci., 10, 3722-3742.
 
[13]  Marten, E., Müller, R.J. and Deckwer, W.D. (2005). Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polym. Degrad. Stab., 88(3), 371-381.
 
[14]  Kamal, M.R. and Huang, B. (1992). Natural and artificial weathering of polymers. In: Hamid SH, Ami MB & Maadhan AG (Eds.), Handbook of Polymer Degradation (pp. 127-168). Marcel Dekker: New York).
 
[15]  Griffin, G.J.L. (1980). Synthetic polymers and the living environment. Pure Appl. Chem. 52, 399-407.
 
[16]  Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K. and Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int. J. Syst. Evol. Microbiol., 66(8), 2813-2818.
 
[17]  Priyanka, N. and Archana, T. (2012). Biodegradability of polythene and plastic by the help of microorganism: a way for brighter future. J. Environ. Anal. Toxicol., 1, 12-15.
 
[18]  Erlandsson, B., Karlsson, S. and Albertsson, A.C. (1997). The mode of action of corn starch and aprooxidant system in LDPE: influence of thermooxidation and UV-irradiation on the molecular weight changes. Polym. Degrad. Stab., 55, 237-45.
 
[19]  Castellani, F., Esposito, A., Stanzione, V., & Altieri, R. (2016). Measuring the biodegradability of plastic polymers in olive-mill waste compost with an experimental apparatus. Adv. Mater. Sci. Eng.
 
[20]  Tournier, V., Topham, C. M., Gilles, A. et al. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580 (7802), 216-219.
 
[21]  Yoshida, S., Hiraga, K., Takehana, T. et al. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196-1199.
 
[22]  Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K. and Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int. J. Syst. Evol. Microbiol., 66(8), 2813-2818.
 
[23]  Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y. and Oda, K. (2019). Biodegradation of PET: Current Status and Application Aspects. ACS Catal., 9(5), 4089-4105.
 
[24]  Palm, G.J., Reisky, L., Böttcher, D. et al. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat. Commun., 10(1), 1717.
 
[25]  Han, X., Liu, W., Huang, J.W. et al. (2017). Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun., 13, 8(1), 2106.
 
[26]  Chen, C.C., Han, X., Ko, T.P., Liu, W. and Guo, R.T. (2018). Structural studies reveal the molecular mechanism of PETase. FEBS J., 285(20), 3717-3723.
 
[27]  Son, H.F., Cho, I.J., Joo, S. Et al. (2019). Rational Protein Engineering of Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET Degradation A.C.S. Catal., 9, 3519-3526.
 
[28]  Austin, H.P., Allen, M.D., Donohoe, B.S. et al. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. U S A., 115(19), 350-357.
 
[29]  Ribitsch, D., Heumann, S., Trotscha, E. et al. (2011). Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Am. Inst. Chem. Eng., 27, 951-960.
 
[30]  Shah, Z., Krumholz, L., Aktas, D.F., Hasan, F., Khattak, M. and Shah, A.A. (2013). Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation, 24 (6), 865-877.
 
[31]  Vimala, P.P. and Mathew, L. (2016) Biodegradation of Polyethylene using Bacillus subtilis. Proc. Technol., 24, 232-239.
 
[32]  Wang, N., Guan, F., Lv, X., Han, D., Zhang, Y., Wu, N., Xia, X. and Tian, J. Enhancing secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis WB600 mediated by the SPamy signal peptide. Lett. Appl. Microbiol., 71(3), 235-241.
 
[33]  Müller, R. J., Schrader, H., Profe, J., Dresler, K., andDeckwer, W. D. (2005). Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 26(17), 1400-1405.
 
[34]  Roth, C., Wei, R.,Oeser, T., et al. (2014). Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl. Microbiol. Biotechnol., 98(18), 7815-7823.
 
[35]  Then, J., Wei, R., Oeser, T., Barth, M., Belisario-Ferrari, M.R., Schmidt, J. and Zimmermann, W. (2015). Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolase from Thermobifida fusca. Biotechnol. J., 10, 592-598.
 
[36]  Barth, M., Honak, A., Oeser, T.et al. (2016). A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol. J., 11(8), 1082-1087.
 
[37]  Wei, R. and Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol., 10 (6), 1308-1322.
 
[38]  Zhang, Y., Wang, L., Chen, J. and Wu, J. (2013). Enhanced activity toward PET by site-directed mutagenesis of Thermobifida fusca cutinase-CBM fusion protein. Carbohydr. Polym., 97(1), 124-1.
 
[39]  Furukawa, M., Kawakami, N., Tomizawa, A. and Miyamoto, K. (2019). Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Sci. Rep., 9(1), 16038.
 
[40]  Ronkvist, A.S.M., Xie, W., Lu, W., and Gross, R.A. (2009). Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules, 42, 5128-5138.
 
[41]  Sepperumal, U., Markandan, M. and Palraja, I. (2013). Micromorphological and chemical changes during biodegradation of Polyethylene terephthalate (PET) by Penicillium sp. J. Microbiol. Biotech. Res., 3 (4), 47-53.
 
[42]  Nowak, B., Pajak, J., Drozd-Brat-Kowicz, M. and Rymarz, G. (2011). Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int. Biodet. Biodegrad., 65, 757-767.
 
[43]  Sowmya, H.V., Ramalingappa, B., Krishnappa, M. and Thippeswamy, B. (2015). Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environ. Dev. Sustain., 17, 731-745.
 
[44]  Ojha, N., Pradhan, N., Singh, S. et al. (2017). Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci. Rep., 7, 39515.
 
[45]  Brunner, I., Fischer, M., Rüthi, J.,Stierli, B. and Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS ONE., 13(8): e0202047.
 
[46]  Kawai, K., Watanabe, M., Shibata, M., Yokoyama, S., Sudate, Y. and Hayashi, S. (2004). Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polym. Degrad. Stab., 86, 105-114.
 
[47]  Montazer, Z., Habibi Najafi, M.B. and Levin, D.B. (2020). Challenges with Verifying Microbial Degradation of Polyethylene. Polymers (Basel), 12(1), 123.
 
[48]  Lee, B., Pometto, A.L., Fratzke, A. and Bailey, T.B. (1991). Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl. Environ. Microbiol., 57(3), 678-685.
 
[49]  Farzi, A., Dehnad, A. and Fotouhi, A.F. (2019). Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatal. Agric. Biotechnol., 17, 25-31.
 
[50]  Almeida, E.L., Carrillo, Rincón, A.F., Jackson, S.A. and Dobson, A.D.W. (2019). In silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces sp. SM14. Front. Microbiol., 10:2187.
 
[51]  Shao, H., Chen, M., Fei, X. et al. (2019). Complete Genome Sequence and Characterization of a Polyethylene Biodegradation Strain, Streptomyces albogriseolus LBX-2. Microorganisms, 7 (10), 379.
 
[52]  de Carvalho, C.C. (2017). Whole cell biocatalysts: essential workers from Nature to the industry. Microb. Biotechnol., 10(2), 250-263.
 
[53]  Yan, F., Wei, R., Cui, Q., Bornscheuer, U.T. and Liu, Y.J. (2020). Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb. Biotechnol.
 
[54]  Glaser, J.A. (2019). Biological Degradation of Polymers in the Environment. In A. Gomiero (Ed.), Plastics in the Environment. IntechOpen: United Kingdom).
 
[55]  Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., Zhou, X., Yuan, Y. (2018). Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering. Engineering., 4(6), 888-893.
 
[56]  Lamberti, F.M., Román-Ramírez, L.A. and Wood, J. (2020). Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ., 28, 2551-2571.
 
[57]  Tiso, T., Narancic, T., Wei, R., et al. (2020). Bio-upcycling of polyethylene terephthalate. bioRxiv.
 
[58]  Beydoun, K. and Klankermayer, J. (2020). Efficient Plastic Waste Recycling to Value-Added Products by Integrated Biomass Processing. Chem. Sus. Chem., 13, 488-492.
 
[59]  Li, W.J., Narancic, T., Kenny, S.T., Niehoff, P.J., O'Connor, K., Blank, L.M. and Wierckx, N. (2020). Unraveling 1,4-Butanediol Metabolism in Pseudomonas putida KT2440. Front. Microbiol. 11, 382.
 
[60]  Johnston, B., Radecka, I., Hill, D. et al. (2018). The Microbial Production of Polyhydroxyalkanoates from Waste Polystyrene Fragments Attained Using Oxidative Degradation. Polymers, 10(9), 957.
 
[61]  Kenny, S.T., Runic, J.N., Kaminsky, W. et al. (2008). Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ. Sci. Technol. 42(20), 7696-701.
 
[62]  Ward, P. G., Goff, M., Donner, M., Kaminsky, W. and O’Connor, K. E. (2006). A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ. Sci. Technol., 40, 2433-2437.
 
[63]  Nikodinovic, J., Kenny, S.T., Babu, R.P., Woods, T., Blau, W.J. and O' Connor, K.E. (2008). The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl. Microbiol. Biotechnol., 80(4), 665-73.
 
[64]  Tan, G.Y., Chen, C.L., Ge, L., Li, L., Tan, S.N. and Wang, J.Y. (2015). Bioconversion of styrene to poly(hydroxyalkanoate) (PHA) by the new bacterial strain Pseudomonas putida NBUS12. Microbes Environ., 30(1), 76-85.
 
[65]  Narancic, T., Kenny, S.T., Djokic, L., Vasiljevic, B., O'Connor, K.E. and Nikodinovic-Runic, J. (2012). Medium-chain-length polyhydroxyalkanoate production by newly isolated Pseudomonas sp. TN301 from a wide range of polyaromatic and monoaromatic hydrocarbons. J. Appl. Microbiol., 113(3), 508-520.