[1] | MacArthur Foundation and World Economic Forum, 2014; Available: http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf. |
|
[2] | Tsai, Y., Fan, C.H., Hung, C.Y. and Tsai, F.J, “Poly (ethylene terephthalate) copolymers that contain 5-tert-butylisophthalic acid and 1-3/1-4-cyclohexanedimethanol: Synthesis, characterization, and properties”, J. Appl. Polym. Sci, 104(1). 279-285. 2007. |
|
[3] | Glendening, L.H. and Scuilla, V.J.Osprey Biotechnics Inc, 2001. Method for waste degradation. U.S. Patent 6,245,552. |
|
[4] | Lapshin, R.V., Alekhin, A.P., Kirilenko, A.G., Odintsov, S.L. and Krotkov, V.A. (2010). Vacuum ultraviolet smoothing of nanometer-scale asperities of Poly (methyl methacrylate) surface. J. Surf. Invest-X-ray +, 4(1), 1-11. |
|
[5] | Olayan, H.B., Hami, H.S. and Owen, E.D. (1996). Photochemical and thermal crosslinking of polymers. J. Macromol. Sci. Polymer Rev., 36(4), 671-719. |
|
[6] | Shah, A. A., Hasan, F., Hameed, A. and Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnol. Adv., 26 (3), 246-265. |
|
[7] | Bartolome, L., Imran, M., Cho, B.G., Al-Masry, W.A. and Kim, D.H. (2012). Recent Developments in the Chemical Recycling of PET. In D. S. Achilias (Ed.), Material Recycling - Trends and Perspectives. United Kingdom: IntechOpen. |
|
[8] | Xanthos, M. and Patel, S.H. (1998). Solvolysis. (In G. Akovali, C.A. Bernardo, J. Leidner, L.A. Utracki & M. Xanthos (Eds.), Frontiers in the Science and Technology of Polymer Recycling. Vol. 351 (pp. 425-436). NATO ASI Series (Series E: Applied Sciences), Springer: Dordrecht.) |
|
[9] | McKeen, L.W. (2013). Introduction to the Weathering of Plastics. (In W. Andrew (Ed), The Effect of UV Light and Weather on Plastics and Elastomers. 3rd ed. (pp. 17-41). Elsevier: Amsterdam, The Netherlands). |
|
[10] | Beachell, H.C. and Nemphos, S.P. (1959). Oxidative Degradation of Polymers in Presence of Ozone. (In Ozone chemistry and Technology Vol. 21 (pp. 168-175). American Chemical Society: Washington DC). |
|
[11] | Gu, J.D., Ford, T.E., Mitton, D.B. and Mitchell, R. (2000). Microbial corrosion of metals. (In Revie W (Ed), The Uhlig Corrosion Handbook 2nd Edition. (pp. 915-927). Wiley: New York). |
|
[12] | Tokiwa, Y., Calabia, B.P., Ugwu, C.U. and Aiba, S. (2009). Biodegradability of Plastics. Int. J. Mol. Sci., 10, 3722-3742. |
|
[13] | Marten, E., Müller, R.J. and Deckwer, W.D. (2005). Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polym. Degrad. Stab., 88(3), 371-381. |
|
[14] | Kamal, M.R. and Huang, B. (1992). Natural and artificial weathering of polymers. In: Hamid SH, Ami MB & Maadhan AG (Eds.), Handbook of Polymer Degradation (pp. 127-168). Marcel Dekker: New York). |
|
[15] | Griffin, G.J.L. (1980). Synthetic polymers and the living environment. Pure Appl. Chem. 52, 399-407. |
|
[16] | Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K. and Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int. J. Syst. Evol. Microbiol., 66(8), 2813-2818. |
|
[17] | Priyanka, N. and Archana, T. (2012). Biodegradability of polythene and plastic by the help of microorganism: a way for brighter future. J. Environ. Anal. Toxicol., 1, 12-15. |
|
[18] | Erlandsson, B., Karlsson, S. and Albertsson, A.C. (1997). The mode of action of corn starch and aprooxidant system in LDPE: influence of thermooxidation and UV-irradiation on the molecular weight changes. Polym. Degrad. Stab., 55, 237-45. |
|
[19] | Castellani, F., Esposito, A., Stanzione, V., & Altieri, R. (2016). Measuring the biodegradability of plastic polymers in olive-mill waste compost with an experimental apparatus. Adv. Mater. Sci. Eng. |
|
[20] | Tournier, V., Topham, C. M., Gilles, A. et al. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580 (7802), 216-219. |
|
[21] | Yoshida, S., Hiraga, K., Takehana, T. et al. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196-1199. |
|
[22] | Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K. and Oda, K. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int. J. Syst. Evol. Microbiol., 66(8), 2813-2818. |
|
[23] | Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y. and Oda, K. (2019). Biodegradation of PET: Current Status and Application Aspects. ACS Catal., 9(5), 4089-4105. |
|
[24] | Palm, G.J., Reisky, L., Böttcher, D. et al. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat. Commun., 10(1), 1717. |
|
[25] | Han, X., Liu, W., Huang, J.W. et al. (2017). Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun., 13, 8(1), 2106. |
|
[26] | Chen, C.C., Han, X., Ko, T.P., Liu, W. and Guo, R.T. (2018). Structural studies reveal the molecular mechanism of PETase. FEBS J., 285(20), 3717-3723. |
|
[27] | Son, H.F., Cho, I.J., Joo, S. Et al. (2019). Rational Protein Engineering of Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET Degradation A.C.S. Catal., 9, 3519-3526. |
|
[28] | Austin, H.P., Allen, M.D., Donohoe, B.S. et al. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. U S A., 115(19), 350-357. |
|
[29] | Ribitsch, D., Heumann, S., Trotscha, E. et al. (2011). Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Am. Inst. Chem. Eng., 27, 951-960. |
|
[30] | Shah, Z., Krumholz, L., Aktas, D.F., Hasan, F., Khattak, M. and Shah, A.A. (2013). Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation, 24 (6), 865-877. |
|
[31] | Vimala, P.P. and Mathew, L. (2016) Biodegradation of Polyethylene using Bacillus subtilis. Proc. Technol., 24, 232-239. |
|
[32] | Wang, N., Guan, F., Lv, X., Han, D., Zhang, Y., Wu, N., Xia, X. and Tian, J. Enhancing secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis WB600 mediated by the SPamy signal peptide. Lett. Appl. Microbiol., 71(3), 235-241. |
|
[33] | Müller, R. J., Schrader, H., Profe, J., Dresler, K., andDeckwer, W. D. (2005). Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 26(17), 1400-1405. |
|
[34] | Roth, C., Wei, R.,Oeser, T., et al. (2014). Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl. Microbiol. Biotechnol., 98(18), 7815-7823. |
|
[35] | Then, J., Wei, R., Oeser, T., Barth, M., Belisario-Ferrari, M.R., Schmidt, J. and Zimmermann, W. (2015). Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolase from Thermobifida fusca. Biotechnol. J., 10, 592-598. |
|
[36] | Barth, M., Honak, A., Oeser, T.et al. (2016). A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol. J., 11(8), 1082-1087. |
|
[37] | Wei, R. and Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol., 10 (6), 1308-1322. |
|
[38] | Zhang, Y., Wang, L., Chen, J. and Wu, J. (2013). Enhanced activity toward PET by site-directed mutagenesis of Thermobifida fusca cutinase-CBM fusion protein. Carbohydr. Polym., 97(1), 124-1. |
|
[39] | Furukawa, M., Kawakami, N., Tomizawa, A. and Miyamoto, K. (2019). Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Sci. Rep., 9(1), 16038. |
|
[40] | Ronkvist, A.S.M., Xie, W., Lu, W., and Gross, R.A. (2009). Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules, 42, 5128-5138. |
|
[41] | Sepperumal, U., Markandan, M. and Palraja, I. (2013). Micromorphological and chemical changes during biodegradation of Polyethylene terephthalate (PET) by Penicillium sp. J. Microbiol. Biotech. Res., 3 (4), 47-53. |
|
[42] | Nowak, B., Pajak, J., Drozd-Brat-Kowicz, M. and Rymarz, G. (2011). Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int. Biodet. Biodegrad., 65, 757-767. |
|
[43] | Sowmya, H.V., Ramalingappa, B., Krishnappa, M. and Thippeswamy, B. (2015). Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environ. Dev. Sustain., 17, 731-745. |
|
[44] | Ojha, N., Pradhan, N., Singh, S. et al. (2017). Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci. Rep., 7, 39515. |
|
[45] | Brunner, I., Fischer, M., Rüthi, J.,Stierli, B. and Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS ONE., 13(8): e0202047. |
|
[46] | Kawai, K., Watanabe, M., Shibata, M., Yokoyama, S., Sudate, Y. and Hayashi, S. (2004). Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polym. Degrad. Stab., 86, 105-114. |
|
[47] | Montazer, Z., Habibi Najafi, M.B. and Levin, D.B. (2020). Challenges with Verifying Microbial Degradation of Polyethylene. Polymers (Basel), 12(1), 123. |
|
[48] | Lee, B., Pometto, A.L., Fratzke, A. and Bailey, T.B. (1991). Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl. Environ. Microbiol., 57(3), 678-685. |
|
[49] | Farzi, A., Dehnad, A. and Fotouhi, A.F. (2019). Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatal. Agric. Biotechnol., 17, 25-31. |
|
[50] | Almeida, E.L., Carrillo, Rincón, A.F., Jackson, S.A. and Dobson, A.D.W. (2019). In silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces sp. SM14. Front. Microbiol., 10:2187. |
|
[51] | Shao, H., Chen, M., Fei, X. et al. (2019). Complete Genome Sequence and Characterization of a Polyethylene Biodegradation Strain, Streptomyces albogriseolus LBX-2. Microorganisms, 7 (10), 379. |
|
[52] | de Carvalho, C.C. (2017). Whole cell biocatalysts: essential workers from Nature to the industry. Microb. Biotechnol., 10(2), 250-263. |
|
[53] | Yan, F., Wei, R., Cui, Q., Bornscheuer, U.T. and Liu, Y.J. (2020). Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb. Biotechnol. |
|
[54] | Glaser, J.A. (2019). Biological Degradation of Polymers in the Environment. In A. Gomiero (Ed.), Plastics in the Environment. IntechOpen: United Kingdom). |
|
[55] | Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., Zhou, X., Yuan, Y. (2018). Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering. Engineering., 4(6), 888-893. |
|
[56] | Lamberti, F.M., Román-Ramírez, L.A. and Wood, J. (2020). Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ., 28, 2551-2571. |
|
[57] | Tiso, T., Narancic, T., Wei, R., et al. (2020). Bio-upcycling of polyethylene terephthalate. bioRxiv. |
|
[58] | Beydoun, K. and Klankermayer, J. (2020). Efficient Plastic Waste Recycling to Value-Added Products by Integrated Biomass Processing. Chem. Sus. Chem., 13, 488-492. |
|
[59] | Li, W.J., Narancic, T., Kenny, S.T., Niehoff, P.J., O'Connor, K., Blank, L.M. and Wierckx, N. (2020). Unraveling 1,4-Butanediol Metabolism in Pseudomonas putida KT2440. Front. Microbiol. 11, 382. |
|
[60] | Johnston, B., Radecka, I., Hill, D. et al. (2018). The Microbial Production of Polyhydroxyalkanoates from Waste Polystyrene Fragments Attained Using Oxidative Degradation. Polymers, 10(9), 957. |
|
[61] | Kenny, S.T., Runic, J.N., Kaminsky, W. et al. (2008). Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ. Sci. Technol. 42(20), 7696-701. |
|
[62] | Ward, P. G., Goff, M., Donner, M., Kaminsky, W. and O’Connor, K. E. (2006). A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ. Sci. Technol., 40, 2433-2437. |
|
[63] | Nikodinovic, J., Kenny, S.T., Babu, R.P., Woods, T., Blau, W.J. and O' Connor, K.E. (2008). The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl. Microbiol. Biotechnol., 80(4), 665-73. |
|
[64] | Tan, G.Y., Chen, C.L., Ge, L., Li, L., Tan, S.N. and Wang, J.Y. (2015). Bioconversion of styrene to poly(hydroxyalkanoate) (PHA) by the new bacterial strain Pseudomonas putida NBUS12. Microbes Environ., 30(1), 76-85. |
|
[65] | Narancic, T., Kenny, S.T., Djokic, L., Vasiljevic, B., O'Connor, K.E. and Nikodinovic-Runic, J. (2012). Medium-chain-length polyhydroxyalkanoate production by newly isolated Pseudomonas sp. TN301 from a wide range of polyaromatic and monoaromatic hydrocarbons. J. Appl. Microbiol., 113(3), 508-520. |
|