[1] | World Malaria Report, World Health Organization (WHO) 2020. |
|
[2] | Ryan, S.J., Lippi, C.A. & Zermoglio, F. Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malaria Journal, 2020; vol. 19, Article 170. |
|
[3] | M.Palaniyandi, T Marriappan, and PK Das. Mapping of land use / land cover and mosquitogenic condition, and linking with malaria epidemic transmission, using remote sensing and GIS, Journal of Entomology and Zoology Studies, 2016; 4(2): 40-47. |
|
[4] | Akhtar R. and Mc Michael AJ, 1996. Rainfall and malaria outbreaks in Western Rajasthan. Lancet, 348: 1457-1458. |
|
[5] | Thomson, M., Indeje, M., Connor, S., Dilley, M. & Ward, N. Malaria early warning in Kenya and seasonal climate forecasts. Lancet (London, England), 2003; 362, 580. |
|
[6] | M.Palaniyandi. Malaria transmission risk in India, Coordinates (GIS e-journal), February, 2013; 9(2): 42-46. |
|
[7] | Wood, B.L., Beck, L.R., Washino, R.K., Hibbard, K.A., Salute, J.S. Estimating high mosquito-producing rice fields using spectral and spatial data. Int. Journal of Remote Sensing, 1992; 13(15): 2813-2826. |
|
[8] | National Vector Borne Disease Control Programme, Ministry of Health and Family Welfare, Government of India, New Delhi, 2019. |
|
[9] | M.Palaniyandi. Red and Infrared remote sensing data for mapping and assessing the malaria and JE vectors”, J of Remote Sensing and GIS, 2014; 3(3): 1-4. |
|
[10] | David J. Rogers, Sarah E. Randolph, Robert W. Snow, and Simon I. Hay. Satellite imagery in the study and forecast of malaria, Nature, 2002, February 7; 415(6872): 710-715. |
|
[11] | Lisa Sattenspiel. Tropical Environments, Human Activities, and the Transmission of Infectious Diseases, Year Book of Physical Anthropology , 2000; vol. (43): 29 pages, WILEY-LISS, INC. |
|
[12] | M.Palaniyandi, PH Anand, and T Pavendar. Environmental risk factors in relation to occurrence of vector borne disease epidemics: Remote sensing and GIS for rapid assessment, picturesque, and monitoring towards sustainable health, Int. J Mos. Res., 2017; 4(3): 09-20 |
|
[13] | Midekisa, A., Senay, G., Henebry, G.M. et al. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malaria Journal; 11, 165 (2012). |
|
[14] | Muhammad Haris MAZHER, Javed IQBAL, Muhammad Ahsan MAHBOOB, and Iqra ATIF. Modeling Spatio-temporal Malaria Risk Using Remote Sensing and Environmental Factors, Iran J Public Health, 2018; Sep; 47(9): 1281-1291. |
|
[15] | Phillipo Paul, Richard Y M Kangalawe, Leonard E G Mboera. Land-use patterns and their implication on malaria transmission in Kilosa District, Tanzania, Trop Dis Travel Med Vaccines, Jun 20, 2018; 4:6. |
|
[16] | Rogers DJ, Randolph SE, Snow RW, Hay SI (2002). Satellite imagery in the study and forecast of malaria. Nature 415:710-715. |
|
[17] | Sewe, M.O., Tozan, Y., Ahlm, C. et al. Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya. Sci Rep, 2017; 7, 2589. |
|
[18] | Union of Concerned Scientists (UCS) Satellite Database, Published on December 5th, 2005, Updated January 1, 2021. https://www.ucsusa.org/resources/satellite-database. |
|
[19] | M.Palaniyandi. The role of Remote Sensing and GIS for Spatial Prediction of Vector Borne Disease Transmission - A systematic review”, Journal of Vector Borne Diseases. 2012; 49 (4): 197-204. |
|
[20] | Hassan M. Khormi, and Lalit Kumar. Examples of using spatial information technologies for mapping and modeling mosquito-borne diseases based on environmental, climatic and socio-economic factors and different spatial statistics, temporal risk indices and spatial analysis: A review, Journal of Food, Agriculture & Environment, 2011; Vol.9 (2): 41-49. |
|
[21] | M.Palaniyandi. The environmental risk factors significant to Anopheles species vector mosquito profusion, Plasmodium falciparum, Plasmodium vivax parasite development, and malaria transmission, using remote sensing and GIS, Int. J Public Health Research & Development, Oct-Dec., 2021; 12(4): (in press). |
|
[22] | Nnadi Nnaemeka Emmanuel, Nimzing Loha, Okolo Mark Ojogba, and Onyedibe Kenneth Ikenna. Landscape epidemiology: An emerging perspective in the mapping and modelling of disease and disease risk factors, Asian Pacific Journal of Tropical Disease, 28th September, 2011; 247-250. |
|
[23] | Sumana Bhattacharya, C. Sharma, R. C. Dhiman, and A. P. Mitra. Climate change and malaria in India, CURRENT SCIENCE, 2006; 90 (3): 369-375. |
|
[24] | M.Palaniyandi, PH Anand, R Maniyosai, T Marriappan, and PK Das. The integrated remote sensing and GIS for mapping of potential vector breeding habitats, and the Internet GIS surveillance for epidemic transmission control, and management, Journal of Entomology and Zoology Studies, 2016; 4(3): 310-318. |
|
[25] | Varun Kumar, Abha Mangal, Sanjeet Panesar, Geeta Yadav, Richa Talwar, et al., Forecasting Malaria Cases Using Climatic Factors in Delhi, India: A Time Series Analysis, Malaria Research and Treatment, 2014; Article ID 482851, 6 pages. |
|