[1] | Elzwayie, A., Afan, H. A., Allawi, M. A., El-Shafie, A, “Heavy metal monitoring, analysis and prediction in lakes and rivers: state of the art”, Environ Sci Pollut Res, 2017. |
|
[2] | CPCB, Water Quality Status of Yamuna River (1999-2005). Central Pollution Control Board, Ministry of Environment & Forests, Assessment and Development of River Basin Series: ADSORBS/41/2006-07. 2006. |
|
[3] | Kaushik, A., Kansal, A., Meena, S., Kumari, S., Kaushik, C. P, “Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments”, Journal of Hazardous Materials, 164:265-270. 2009. |
|
[4] | Sehgal, M., Garg, A., Suresh, R., Dagar, P, “Heavy metal contamination in the Delhi segment of Yamuna basin”, Environ. Monit. Assess. 184(2): 1181-1196, 2012. |
|
[5] | Kaur, R, Regional resource characterization through remote sensing & GIS for effective decision making-A Case Study of NCR. A note prepared for an Indo-US workshop on Innovative E-technologies for Distance Education, Extension/Outreach in Efficient Water Management, ICRISAT, Patancheru, AP, India. March 2007. |
|
[6] | Kaur, S., Mehra, P, “Assessment of heavy metals in summer and winter seasons in River Yamuna segment flowing through Delhi, India”, Journal of Environment and Ecology, 2012. |
|
[7] | Pal, R., Dubey, R. K., Dubey, S. K., Singh, A., Sharma, T. C, “Assessment of heavy metal pollution of Yamuna water in Mathura region through index analysis approach”, Int. J. of Chemical Studies. 5(6). 1286-1289. 2017. |
|
[8] | Chaudhary, S., Banerjee, D. K., Kumar, N., Yadav, S, “Assessment of bioavailable metals in sediments of Yamuna flood plain using two different extraction procedures”, Sustainable Environment Research 26(1). 28-32. 2016. |
|
[9] | Furhan, I., Ali, M., Abdus, S., Khan, B. A., Ahmad, S., Qamar, M., et al., “Seasonal variation of Physico- Chemical characteristics of river Soan water at Dhoak Pathan (Chakwal), Pakistan”, International Journal of Agriculture and Biology. 6(1). 89-92. 2004. |
|
[10] | Gholami, S., Srikantaswamy, S, “Analysis of agricultural impact on the Cauvery River water around KRS dam”, World Applied Sciences Journal. 6(8). 1157-1169. 2009. |
|
[11] | APHA, Standard Methods for examination of water and wastewater, 22nd edn. American Public Health Association, Washington, USA. 2012. |
|
[12] | Siddiqui, E. and Pandey, J, “Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study”, Environmental Science and Pollution research, 26. 10926-10940. 2019. |
|
[13] | Bhardwaj, R., Gupta, A., Garg, J. K, “Evaluation of heavy metal contamination using environmetrics and Indexing approach for river Yamuna, Delhi stretch, India”, Water Science journal, 2017. |
|
[14] | Yeh, G., Hoang, H., Lin, C., et al., “Assessment of heavy metal contamination and adverse biological effects of an industrially affected river”, Environ Sci Pollu Res. 2020. |
|
[15] | Bureau of Indian Standards, BIS: Indian standard drinking water specification (2nd rev) http://cgwb.gov.in/Documents/WQ-standards.pdf. 2012. |
|
[16] | Singh, A.L, “Toxicity of heavy metals in the water of Ganga river at Varanasi, India: Environmental implication”, Pollution Research 30(2). 217-220. 2011. |
|
[17] | Chaudhary, S., Banerjee, D. K, “Metal phase association of chromium in contaminated soils from an industrial area in Delhi”, Chemical speciation and Bioavailability 16(4). 2004. |
|
[18] | World Health Organization (WHO): Guidelines for drinking-water quality. 3rd EDn.,. 1st Addendum to 1. WHO press, 2006. |
|
[19] | Sundaray, S.K., et al.,” Dynamics and quantification of dissolved heavy metals in the Mahanadi River estuarine system, India”, Environmental Monitoring and assessment 184(2). 1157-79. 2011. |
|
[20] | Bhuyan, M., S., Bakar, M. A, “Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh”, Environ Sci Pollut Res. 2017. |
|
[21] | Gallo, M., et al., “Dissolved and particulate heavy metals in the salado River (santa fe, Argentina)”, Water, Air, and Soil Pollution. 2006. |
|
[22] | Jia, Y., Wang, L., Qu, Z., et al., “Distribution, contamination and accumulation of heavy metals in water, sediments, and freshwater shellfish from Liuyang River, Southern China”, Environ Sci Pollut Res. 2018. |
|
[23] | Bi, B., Liu, X., Guo, X. et al., “Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China”, Environ Sci Pollut Res. 2018. |
|
[24] | Pandey, J., Singh, A.V., Singh, A., Singh, R,“Impact of changing atmospheric deposition chemistry on nitrogen and phosphorous loading to Ganga River”, Bull Environ Contam Toxico l91. 184-190. 2013. |
|
[25] | Olayebi, O. O, Adebayo, A. T, “Removal of heavy metals from petroleum refinery effluents using coconut shell-based activated carbon”, Int. J. of Engg. and emerging Scientific Discovery, 2(2). 2536-7269. 2017. |
|
[26] | Dixit, R., et al., “Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes”, Sustainability. 2015. |
|
[27] | Verma, C., Madan, S., Hussain, “Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi, India”, Cogent Engineering, 2016. |
|
[28] | Akbulut, N.E., Tuncer, A.M,“Accumulation of heavy metals with water quality parameters in Kızılırmak River Basin (Delice River) in Turkey”, Environ Monit Assess. 2011. |
|
[29] | Aktar, M.W., Paramasivam, M., Ganguly, M., Purkait, S., Sengupta, D, “Assessment and occurrence of various heavy metals in surface waterof Ganga river around Kolkata: a study for toxicity and ecological impact”, Environ. Monit. Assess. 160 (1-4). 207-213. 2010. |
|
[30] | Jain, C. K., Sharma, M. K,“Heavy Metal Transport in the Hindon River Basin, India”, Environ Monit Assess. 2006. |
|
[31] | Varol, M., Gökot, B., and Bekleyen, A,“Dissolved heavy metals in the Tigris River (Turkey): spatial and temporal variations”, Environ Sci Pollut Res 20. 6096-6108. 2013. |
|
[32] | Islam, Md. S., et al., “Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country”, Ecological Indicators 48. 282-291. 2015. |
|
[33] | Mohan, S. V., Nithila, P., Reddy, S. J, “Estimation of heavy metal in drinking water and development of heavy metal pollution index”, Journal of Environmental Science Health 31. 283-289. 1996. |
|
[34] | WHO, Guidelines for drinking water quality. Vol 1. 3 edition. ISBN 9241546387. 2004. |
|
[35] | Milivojević, J., Krstić, D., Šmit, B., Djekić, V, “Assessment of Heavy Metal contamination and Calculation of Its Pollution Index for Uglješnica River, Serbia”, Bulletin of Environmental Contamination and Toxicology 97. 737-742. 2016. |
|
[36] | Bakan, G. H., BokeOzkoc, H., Tulek, S., and Cuce, H, “Integrated Environmental Quality Assessment of Kizihrmak River and its Coastal Environment. Turkish journal of Fisheries and aquatic Sciences”, 10. 453-462. 2010. |
|
[37] | Tamasi, G., Cini, R, “Heavy metals in drinking waters from Mount Amiata ( Tuscany, Italy). Science of total Environment”, 327. 41-51. 2004. |
|
[38] | An Q, Wu Y, Wang J, Li Z, “Assessment of dissolved heavy metal in the Yangtze River estuary and its adjacent sea, China”, Environ Monit Assess164. 173-187. 2009. |
|
[39] | Mao G, Zhao Y, Zhang F et al., “Spatiotemporal variability of heavy metals and identification of potential source tracers in the surface water of the Lhasa River basin”, Environ Sci Pollut Res 26. 7442-7452. 2019. |
|
[40] | Patil PR, Shrivastava VS, “Metallic status of river Godavari—a statistical approach”. Indian J. Environ. Prot. 23 (6). 650-653. 2003. |
|
[41] | Jameel AA, “A study on the distribution of organic matter and toxic metals in sediments of river Cauvery at Tiruchirapalli”, Indian J. Environ.Prot. 21 (4). 302-304. 2001. |
|
[42] | Sundaray S K, Panda U C, Nayak B B, Bhatta D, ”Multivariate statistical techniques for the evaluation of spatial and temporal variation in water quality of Mahanadi river-estuarine system (India) A case study”. Environ. Geochem. Health 28 (4). 317-330. 2006. |
|