[1] | Abdullah, M., et al., Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem, 1990, 94, 6820-6825. |
|
[2] | Conningham, J., et al., Aquatic and Surface Photochemistry. Lewis Publishers. Boca Raton. FL, 1994 Chapter 22. |
|
[3] | Fox, M.A., Doan, K.E., Dulay, M.T. The effect of the “Inert” support on relative photocatalytic activity in the oxidative decomposition of alcohols on irradiated titanium dioxide composites. Res. Chem. Intermed, 1994, 20, 711. |
|
[4] | Greem, K.J., Rudham, R. Photocatalytic oxidation of propan-2-ol by semiconductor–zeolite composites. J. Chem. Soc. Faraday Trans, 1993, 89, 1867. |
|
[5] | Mattews, R.W., An adsorption water purifier with in situ photocatalytic regeneration. J. Catal, 1988, 113, 549-555. |
|
[6] | Mattews, R.W., Response to the comment. Photocatalytic reactor design: an example of mass-transfer limitations with an immobilized. J. Phys. Chem, 1988, 92, 6853-6854. |
|
[7] | Mattews, R.W., Purification of water with near UV illuminated suspensions of titanium dioxide. Water Research, 1990, 24, 653-600. |
|
[8] | Ollis, D.F., and Al-Ekabi, H., Photocatalytic Purification and Treatment of Water and Air (Eds.). Elsevier Sci. Publishers, Amsterdam, 1993, pp. SI 1-532. |
|
[9] | Sabate, J., et al., Comparison of TiO2 powder suspensions and TiO2 ceramic membranes supported on glass as photocatalytic systems in the reduction of chromium (VI). J. Mol. Catal, 1992, 71, 57-68. |
|
[10] | Sabate, J., et al., A kinetic study of the photocatalytic degradation of 3- chlorosalicylic acid over TiO2 membranes supported on glass. J. Catal, 1991,127, 167-177. |
|
[11] | Serpone, N., and Pelizzetti, E. Photocatalysis-Fundamentals and Aplications. Interscience, 1989, New York. |
|
[12] | Xu, Y., and Chen, X, Photocatalytic reduction of dichromate over semiconductor catalysts. Chem. Ind, 1990. 15, 497-498. |
|
[13] | Ghaffarian HR, Saiedi M & Sayyadnejad M, Synthesis of ZnO nanoparticles by spray pyrolysis method, Iran. J. Chem. Chem. Eng., 2011, 30, 1-6. |
|
[14] | Sakthivel, S., et al., Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Mat. Solar Cells, 2003. 77, 65-82. |
|
[15] | Anandan, S., et al., Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A Chem, 2007, 266, 149-157. |
|
[16] | Pradeep, R S., et al., Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light. Sep. Purific. Technol, 2010, 70, 338-344. |
|
[17] | Anđelka, T., et al., A study of the photo-catalytic degradation of methomyl by UV light. Chem. Ind. Chem. Eng. Quart, 2009, 15, 17-19. |
|
[18] | Wang, Q., Geng, B., Wang, S., ZnO/Au hybrid nanoarchitectures: wet-chemical synthesis and structurally enhanced photocatalytic performance. Environ. Sci. Technol., 2009, 43, 8968-8973. |
|
[19] | Burbano, J., et al., Evaluation of Zinc Oxide-Based Photocatalytic Degradation of a Commercial Pesticide. J. Adv. Oxid. Technol., 2008, 11, 49-55. |
|
[20] | Anandan, S., et al., Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A Chem, 2007, 266, 149-157. |
|
[21] | Kamel, D., and Tahar, S., Kinetics of heterogeneous photo catalytic decomposition of 2,4-dichlorophenoxyacetic acid over titanium dioxide and zinc oxide in aqueous solution, Pest Manag. Sci, 1999, 54, 269-276. |
|
[22] | Emmanuelle, V., Corinne, E., Jean-Marc, C., Influence of pH and irradiation wavelength on the photochemical degradation of sulfonylureas. J. Photochem. Photobiol A: Chem, 2004, 163, 69-75. |
|
[23] | Emmanuelle, V., et al., Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2. Appl. Catal. Environ, 2002, 38, 127-137. |
|
[24] | Daneshvar, N., et al., Photo-catalytic degradation of the insecticide diazinone in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep. Purific. Technol, 2007, 58, 91-98. |
|
[25] | Umar, I.G., et al., Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions. J. Hazard. Mat, 2009, 168, 57-63. |
|
[26] | Young, J.J., Cynthia, S., Taein, O., Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue. Mat. Res. Bull, 2006, 41, 67-77. |
|
[27] | Chung-Hsin Wu, et al., Photodegradation of polychlorinated dibenzo-p-dioxins: comparison of photocatalysts. J. Hazard. Mat. 2004, 114, 191-197. |
|
[28] | Kandavelu, V., Kastien, H., Ravindranathan, T.K., Photo catalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts. Appl. Catal. B: Environ, 2004, 48, 101-111. |
|
[29] | Rabindranathan, S., Devipriya, S., Yesodharan, S., Photocatalytic degradation of phosphamidon on semiconductor oxides. J. Hazard. Mat, 2003, 29, 217-229. |
|
[30] | Daneshvar, J. N., SalariD., and Khataee,A.R., Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobio. A Chem., 2004, vol. 162, 317-322. |
|
[31] | Kansal, S.K., Ali, A.H., and Kapoor,S., Photocatalytic decolorization of beibrich scarlet dye in aqueous phase using different nanophotocatalysts. Desalination, 2010, 259, 147-155. |
|
[32] | Chakrabarti, S., and Dutta, B.K., Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater, 2004, 112, 269-278. |
|
[33] | Tan,T.K., et al., Photodegradation of Phenol Red in the Presence of ZnO Nanoparticles. World Academy of Science, Engineering and Technology, 2011, 55. |
|
[34] | Badalpoor,N., Giahi,M., and Habibi,S., Photocatalytic degradation of Lidocaine HCl using CuO/ZnO nanoparticles. Journal of Physical and Theoretical Chemistry of Islamic Azad University of Iran, 2012, 9 (1), 29-34. |
|
[35] | Pest. Management Regulatory Agency Proposed Registration Decision- PRD 2008-02, Bispyribac Sodium. |
|
[36] | Conclusion on the peer review of the pesticide risk assessment of the active substance Bispyribac, European Food Safety Authority, EFSA Journal 2010, 8(10):1692. |
|
[37] | OECD Guidelines for Testing of Chemicals (No. 301, Adopted: 17th July 1992) Ready biodegradability. |
|
[38] | M. Vafaee, M.S. Ghamsari, Preparation and Characterization of ZnO nanoparticles by a novel sol-gel route, materials Letters, 2007, 61, 3265-3268. |
|
[39] | OECD Guidelines for Testing of Chemicals (No. 201, Adopted: 7 June 1984) Alga, ‘‘Growth Inhibition Test’’. |
|
[40] | Y. Zheng, C. Chen, et al., Luminescence and Photocatalytic activity of ZnO nanocrystals: Correlation between Structure and Property. Inorg. Chem, 2007, 46, 6675- 6682. |
|
[41] | Q Wan, TH Wang, JC Zhao, Enhanced photocatalytic activity of ZnO nanotetrapods. Appl. Phys. Lett., 2005, 87: 083105-083107. |
|
[42] | EI Saeed AM, EI-Fattah MA, Azzam AM, Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating. Dyes Pigment, 2015, 121: 282-9. |
|
[43] | Badalpoor N, Giahi M & Habibi S, Journal of Physical and Theoretical Chemistry, 9 (1) (2012), 29-34. |
|
[44] | Allen, N.S., et al., Factors affecting the interfacial adsorption of stabilizers on to titanium dioxide particles (flow microcalo-rimetry, modelling, oxidation and FT-IR studies) Nano ver-sus pigmentary grades, J. Dyes and Pigments, 2006, 70, 19/2-203. |
|
[45] | Wei, L., Shifu, Ch., Wei, Zh., Sujuan, Zh., Journal of Hazardous Materials, 2009, 164. |
|
[46] | Fenoll, S. J., Vela,N., Ruiz,E., Navarro,G, Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. Journal of hazardous Materials, 2009. 172, 1303-1310. |
|
[47] | Masoud Giahi, and Faegheh Ghanbari., Photocatalytic Degradation of Triton X-100 by Zinc oxide Nanoparticles. Journal of Physical and Theoretical Chemistry, 2010, 7 (3), 189-193. |
|
[48] | Ramesh A and Balasubramanian M, Kinetics and hydrolysis of fenamiphos, fipronil and triflurolin in aqueous buffer solutions, Journal of Agricultural and Food Chemistry, 1999, 47, 3367-3372. |
|