[1] | P.X. Sheng, Y.P. Ting, J.P. Chen, L. Hong, Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorption capacity and investigation of mechanisms, J. Coll. Interf. Sci., 275, 131-141, 2004. |
|
[2] | M. Gavrilescu, Removal of heavy metals from the environment by biosorption, Eng. Life Sci. 4, 219-232, 2004. |
|
[3] | K. Yasukazu, K. Ryo, N. Takuya, S. Ryo, S. Kazunori, Improving Effect of MnO2 Addition on TiO2-Photocatalytic Removal of Lead Ion from Water, Journal of Water and Environment Technology, 15, 35-42, 2017. |
|
[4] | L. Murruni, F. Conde, G. Leyva, M. I. Litter, Photocatalytic reduction of Pb(II) over TiO2: new insights on the effect of different electron donors, Applied Catalysis B, 84, 563–569, 2008. |
|
[5] | K. Kabra, R. Chaudhary, R. L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous phase photocatalysis: a review, Industrial and Engineering Chemistry Research, 43(24), 7683-7696, 2004. |
|
[6] | Herrmann, J.M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53, 115-129, 1999. |
|
[7] | M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69-96, 1995. |
|
[8] | A.L. Linsebigler, G.Q. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem.Rev., 95, 735-758, 1995. |
|
[9] | M.I. Litter, Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Appl. Catal. B: Environ., 23, 89-114, 1999. |
|
[10] | D. Chen, A. K. Ray, Removal of toxic metal ions from wastewater by semiconductor photocatalysis, Chem. Eng. Sci., 56(4), 1561-1570, 2001. |
|
[11] | A.L Stroyuk, V.V. Shvalagin, S.Y. Kuchmii, Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles. J. Photochem. Photobio. A: Chem., 173, 185-194, 2005. |
|
[12] | L. Liyuan, F. Jiang, J. Liu, H. Wan, Y. Wan, S. Zheng, Enhanced photocatalytic reduction of aqueous Pb(II) over Ag loaded TiO2 with formic acid as hole scavenger, Journal of Environmental Science and Health-Part A, 47(3), 327-336, 2012. |
|
[13] | S. Dutta, K. Das, K. Chakrabarti, D. Jana, S.K. De, S. De, the Highly efficient photocatalytic activity of CuO quantum dot decorated rGO nanocomposites, Phys. D: Appl. Phys., 49, 315107-315115, 2016. |
|
[14] | N. Yusoff, N.M. Huang, M.R. Muhamad, S.V. Kumar, H.N. Lim, I. Harrison, Hydrothermal synthesis of CuO/functionalized graphene nanocomposites for dye degradation, Mater. Lett. 93, 393-396, 2013. |
|
[15] | Y.W. Hsu, T.K. Hsu, C.L. Sun, Y.T. Nien, N.W. Pu, M.D. Ger, Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications, Electrochim. Acta, 82, 152-157, 2012. |
|
[16] | Z. Zhang, P. Pan, X. Liu, Z. Yang, J. Wei, Z. Wei, 3D-Copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing, Mat. Chem. Phys., 187, 28-38, 2017. |
|
[17] | Y. Zhao, X. Song, Q. Song, Z. Yin, A facile route to the synthesis of copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant, Cryst Eng Comm, 14, 6710-6719, 2012. |
|
[18] | B. Wang, X.L. Wu, C.Y. Shu, Y.G. Guo, C.R. Wang, Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries, J. Mater. Chem., 20, 10661-10664, 2010. |
|
[19] | J. Zhu, G. Zeng, F. Nie, X. Xu, S. Chen, Q. F. Han, X. Wang, Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system. Nanoscale, 2, 988-994, 2010. |
|
[20] | B. Prashanti, T. Damodharam, Fabrication of Graphene–CuO Nanocomposite with Improved Photocatalytic Degradation for Palladium Solution under Solar Light Irradiation, Journal of Nanoscience and Technology, 4(5), 497-499, 2018. |
|
[21] | M. Suleiman, M. Mousa, A. Hussein, B. Hammouti, T. B. Hadda, I. Warad, Copper(II)-Oxide Nanostructures: Synthesis, Characterizations and their Applications–Review. J. Mater. Environ. Sci., 4 (5), 792-797, 2013. |
|
[22] | J. Song, L. Xu, C. Zhou, R. Xing, Q. Dai, D. Liu, H. Song, Synthesis of Graphene Oxide Based CuO Nanoparticles Composite Electrode for Highly Enhanced Nonenzymatic Glucose Detection. ACS Appl. Mater. Interfaces, 5, 12928-12934, 2013. |
|