Article citationsMore >>

Nambisan, B. and Sundanesan, S. Effect of processing on cyanogenic glycoside content of cassava.Central Tuber Crops: Research Institute, India, 1985, pp 41-46.

has been cited by the following article:

Article

Microbiological and Physicochemical Characteristics of Soil receiving Cassava Effluent in Elele, Rivers State, Nigeria

1Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture Umudike, Umuahia, Abia State, Nigeria

2Department of Microbiology, Faculty of Science, Madonna University Elele, Rivers State, Nigeria


Journal of Applied & Environmental Microbiology. 2015, Vol. 3 No. 1, 20-24
DOI: 10.12691/jaem-3-1-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
Eze V. C., Onyilide D. M.. Microbiological and Physicochemical Characteristics of Soil receiving Cassava Effluent in Elele, Rivers State, Nigeria. Journal of Applied & Environmental Microbiology. 2015; 3(1):20-24. doi: 10.12691/jaem-3-1-4.

Correspondence to: Eze  V. C., Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture Umudike, Umuahia, Abia State, Nigeria. Email: mekus2020@gmail.com

Abstract

The microbiological and physicochemical characteristics of soil receiving cassava effluent in Elele Rivers State, Nigeria were carried out. A total of twenty four (24) samples were collected and analysed microbiologically for total aerobic bacterial plate count, coliform count, Escherichia coli count and fungal count using pour plate technique. The media used were nutrient agar, MacConkey agar, eosin methylene blue agar, Sabouraud dextrose agar. The T-test was used to test for significant difference. The mean total aerobic plate count of contaminated soil ranged from 5.76 ± 0.05 log10cfu/g to 5.60 ± 0.11 log10cfu/g, coliform count of contaminated soil ranged from 4.71 ± 0.07 log10cfu/g to 4.56 ± 0.08 log10cfu/g, Escherichia coli count of contaminated soil ranged from 2.56 ± 0.06 log10cfu/g to 2.39 ± 0.11 log10cfu/g, fungal count of contaminated soil ranged from 3.65 ± 0.09 log10cfu/g to 3.47 ± 0.09 log10cfu/g. The control sample has the following values for total aerobic plate count 5.84 ± 0.07 log10cfu/g, Coliform count of 4.28 ± 0.11 log10cfu/g, fungal count of 3.19 ± 0.16 log10cfu/g and Escherichia coli count of 2.14 ± 0.12 log10cfu/g. Microorganisms isolated were: Klebsiella species, Staphylococcus aureus, Escherichia coli, Pseudomonas species, Enterobacter species, Bacillus species, Proteus species, Aspergillus species, Rhizopus species and Penicillium species. Soil contaminated with cassava effluent caused some physicochemical changes in the samples collected which were: Cyanide content 3.0 mg/kg, conductivity 33.4uS/cm, phosphate 0.52 mg/kg, nitrate 0.35 mg/kg, sulphate 13.0 mg/kg, calcium 167.0 mg/kg, pH 6.3 mg/kg, magnesium 89.0 mg/kg, potassium 4.0 mg/kg and sodium 92.0 mg/kg. The cassava effluent should therefore be treated before discharge into the environment to prevent possible pollution.

Keywords